JAMA | Original Investigation

Prevalence of Depression, Depressive Symptoms, and Suicidal Ideation Among Medical Students A Systematic Review and Meta-Analysis

Lisa S. Rotenstein, BA; Marco A. Ramos, MPhil; Matthew Torre, MD; J. Bradley Segal, BA, BS; Michael J. Peluso, MD, MPhil; Constance Guille, MD, MS; Srijan Sen, MD, PhD; Douglas A. Mata, MD, MPH

IMPORTANCE Medical students are at high risk for depression and suicidal ideation. However, the prevalence estimates of these disorders vary between studies.

OBJECTIVE To estimate the prevalence of depression, depressive symptoms, and suicidal ideation in medical students.

DATA SOURCES AND STUDY SELECTION Systematic search of EMBASE, ERIC, MEDLINE, psycARTICLES, and psycINFO without language restriction for studies on the prevalence of depression, depressive symptoms, or suicidal ideation in medical students published before September 17, 2016. Studies that were published in the peer-reviewed literature and used validated assessment methods were included.

DATA EXTRACTION AND SYNTHESIS Information on study characteristics; prevalence of depression or depressive symptoms and suicidal ideation; and whether students who screened positive for depression sought treatment was extracted independently by 3 investigators. Estimates were pooled using random-effects meta-analysis. Differences by study-level characteristics were estimated using stratified meta-analysis and meta-regression.

MAIN OUTCOMES AND MEASURES Point or period prevalence of depression, depressive symptoms, or suicidal ideation as assessed by validated questionnaire or structured interview.

RESULTS Depression or depressive symptom prevalence data were extracted from 167 cross-sectional studies (n = 116 628) and 16 longitudinal studies (n = 5728) from 43 countries. All but 1 study used self-report instruments. The overall pooled crude prevalence of depression or depressive symptoms was 27.2% (37 933/122 356 individuals; 95% CI, 24.7% to 29.9%, l^2 = 98.9%). Summary prevalence estimates ranged across assessment modalities from 9.3% to 55.9%. Depressive symptom prevalence remained relatively constant over the period studied (baseline survey year range of 1982-2015; slope, 0.2% increase per year [95% CI, -0.2% to 0.7%]). In the 9 longitudinal studies that assessed depressive symptoms before and during medical school (n = 2432), the median absolute increase in symptoms was 13.5% (range, 0.6% to 35.3%). Prevalence estimates did not significantly differ between studies of only preclinical students and studies of only clinical students (23.7% [95% CI, 19.5% to 28.5%] vs 22.4% [95% CI, 17.6% to 28.2%]; P = .72). The percentage of medical students screening positive for depression who sought psychiatric treatment was 15.7% (110/954 individuals; 95% CI, 10.2% to 23.4%, $l^2 = 70.1$ %). Suicidal ideation prevalence data were extracted from 24 cross-sectional studies (n = 21002) from 15 countries. All but 1 study used self-report instruments. The overall pooled crude prevalence of suicidal ideation was 11.1% (2043/21 002 individuals; 95% CI, 9.0% to 13.7%, I² = 95.8%). Summary prevalence estimates ranged across assessment modalities from 7.4% to 24.2%.

CONCLUSIONS AND RELEVANCE In this systematic review, the summary estimate of the prevalence of depression or depressive symptoms among medical students was 27.2% and that of suicidal ideation was 11.1%. Further research is needed to identify strategies for preventing and treating these disorders in this population.

JAMA. 2016;316(21):2214-2236. doi:10.1001/jama.2016.17324

Content of the second s

- Related article page 2237
- Supplemental content

+ CME Quiz at jamanetworkcme.com and CME Questions page 2265

Author Affiliations: Author affiliations are listed at the end of this article.

Corresponding Author: Douglas A. Mata, MD, MPH, Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Brigham Education Institute, Harvard Medical School, 75 Francis St, Boston, MA O2115 (dmata@bwh.harvard.edu).

2214

S tudies have suggested that medical students experience high rates of depression and suicidal ideation.¹ However, estimates of the prevalence of depression or depressive symptoms among students vary across studies from 1.4% to 73.5%,^{2,3} and those of suicidal ideation vary from 4.9% to 35.6%.^{4,5} Studies also report conflicting findings about whether student depression and suicidality vary by undergraduate year, sex, or other characteristics.⁶⁻¹¹

Reliable estimates of depression and suicidal ideation prevalence during medical training are important for informing efforts to prevent, treat, and identify causes of emotional distress among medical students,¹² especially in light of recent work revealing a high prevalence of depression in resident physicians.¹³ We conducted a systematic review and metaanalysis of published studies of depression, depressive symptoms, and suicidal ideation in undergraduate medical trainees.

Methods

Search Strategy and Study Eligibility

Two authors (M.A.R. and D.A.M.) independently identified cross-sectional and longitudinal studies published prior to September 17, 2016, that reported on the prevalence of depression, depressive symptoms, or suicidal ideation in medical students by systematically searching EMBASE, ERIC, MEDLINE, psycARTICLES, and psycINFO. In addition, the authors screened the reference lists of identified articles and corresponded with study investigators using the approaches implied by the Preferred Reporting Items for Systematic Reviews and Meta-analyses and Meta-analysis of Observational Studies in Epidemiology reporting guidelines.^{14,15}

For the database searches, terms related to medical students and study design were combined with those related to depression and suicide without language restriction (complete details of the search strategy appear in eMethods 1 in the Supplement). Included studies (1) reported data on medical students, (2) were published in peer-reviewed journals, and (3) used a validated method to assess for depression, depressive symptoms, or suicidal ideation.¹⁶ A third author (L.S.R.) resolved discrepancies by discussion and adjudication.

Data Extraction and Quality Assessment

Three authors (L.S.R., M.T., and J.B.S.) independently extracted the following data from each article using a standardized form: study design; geographic location; years of survey; year in school; sample size; average age of participants; number and percentage of male participants; diagnostic or screening method used; outcome definition (ie, specific diagnostic criteria or screening instrument cutoff); and reported prevalence estimates of depression, depressive symptoms, or suicidal ideation. Whether students who screened positive for depression sought psychiatric or other mental health treatment also was extracted. When there were studies involving the same population of students, only the most comprehensive or recent publication was included.

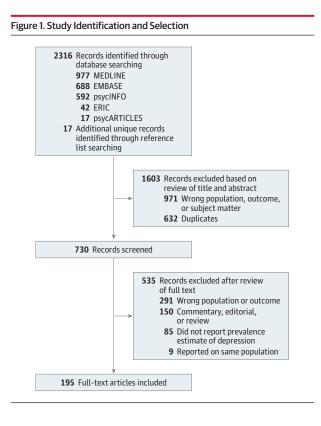
The same 3 authors independently assessed the risk of bias of these nonrandomized studies using a modified ver-

Key Points

Question Are medical students at high risk for depression and suicidal ideation?

Findings In this meta-analysis, the overall prevalence of depression or depressive symptoms among medical students was 27.2%, and the overall prevalence of suicidal ideation was 11.1%. Among medical students who screened positive for depression, 15.7% sought psychiatric treatment.

Meaning The overall prevalence of depressive symptoms among medical students in this study was higher than that reported in the general population, which underscores the need for effective preventive efforts and increased access to care for medical students.


sion of the Newcastle-Ottawa scale, which assesses sample representativeness and size, comparability between respondents and nonrespondents, ascertainment of depressive or suicidal symptoms, and thoroughness of descriptive statistics reporting (complete details regarding scoring appear in eMethods 2 in the Supplement).¹⁷ Studies were judged to be at low risk of bias (\geq 3 points) or high risk of bias (<3 points). A fourth author (D.A.M.) resolved discrepancies through discussion and adjudication.

Data Synthesis and Analysis

Prevalence estimates of depression or depressive symptoms and suicidal ideation were calculated by pooling the studyspecific estimates using random-effects meta-analyses that accounted for between-study heterogeneity.¹⁸ The same approach was used to estimate the summary percentage of students screening positive for depression who sought treatment. When studies reported point prevalence estimates made at different periods within the year, the overall period prevalence was used. Standard χ^2 tests and the I^2 statistic (ie, the percentage of variability in prevalence estimates due to heterogeneity rather than sampling error, or chance, with values \geq 75% indicating considerable heterogeneity) were used to assess between-study heterogeneity.^{19,20}

Sensitivity analyses were performed by serially excluding each study to determine the influence of individual studies on the overall prevalence estimates. Results from studies grouped according to prespecified study-level characteristics were compared using stratified meta-analysis (for diagnostic criteria or screening instrument cutoff, study design, undergraduate level, continent or region, country, and Newcastle-Ottawa Scale components) or random-effects meta-regression (for year of baseline survey, age, and sex).^{21,22} To isolate associations within the medical school experience from associations with assessment tools, an analysis restricted to longitudinal studies reporting both preand intramedical school depressive symptom prevalence estimates was performed.

Bias secondary to small study effects was investigated using funnel plots and the Egger test.^{23,24} All analyses were performed using R version 3.2.3 (R Foundation for Statistical Computing).²⁵ Statistical tests were 2-sided and used a significance threshold of P < .05.

Results

Study Characteristics

One hundred ninety-five studies^{2-11,26-210} involving a total of 129 123 individuals in 47 countries were included in the analysis (**Figure 1**). The median number of participants per study was 336 (range, 44-10140). One hundred sixty-seven cross-sectional studies^{2-4,6-9,11,26-184} (n = 116 628) and 16 longitudinal studies^{10,196-210} (n = 5728) in 43 countries reported on depression or depressive symptom prevalence (**Table 1**). Twenty-four cross-sectional studies (n = 21002) in 15 countries reported on the prevalence of suicidal ideation (**Table 2**).^{4,5,34,62,65,73,74,79,112,160,165,167,174,185-195}

Medical student training level, continent or region, country, diagnostic criteria or screening instrument cutoff, and total Newcastle-Ottawa scores for the studies appear in eTable 1 in the Supplement. Newcastle-Ottawa score components for all 195 individual studies appear in eTable 2 in the Supplement.

Prevalence of Depression or Depressive Symptoms Among Medical Students

Meta-analytic pooling of the prevalence estimates of depression or depressive symptoms reported by 183 studies yielded a crude summary prevalence of 27.2% (37 933/ 122 356 individuals; 95% CI, 24.7%-29.9%), with significant evidence of between-study heterogeneity (Q = 16721.1, $\tau^2 = 0.78$, $I^2 = 98.9$ %, P < .001) (**Figures 2**, 3, 4, 5, and 6). The prevalence estimates reported by the individual studies ranged from 1.4% to 73.5%. Sensitivity analysis, in which

the meta-analysis was serially repeated after exclusion of each study, demonstrated that no individual study affected the overall prevalence estimate by more than 0.3% (eTable 3 in the Supplement).

To further characterize the range of depression or depressive symptom prevalence estimates identified by these methodologically diverse studies, meta-analyses stratified by screening instrument and cutoff score were conducted (**Figure 7**). Summary prevalence estimates ranged from 9.3% (157/1234 individuals [95% CI, 5.3%-15.7%]; Q = 19.7, $\tau^2 = 0.24$, $I^2 = 84.8\%$) for the Hospital Anxiety and Depression Scale with a cutoff score of 11 or greater to 55.9% (540/1039 individuals [95% CI, 45.1%-66.2%]; Q = 32.9, $\tau^2 = 0.18$, $I^2 = 90.9\%$) for the Aga Khan University Anxiety and Depression Scale with a cutoff score of 19 or greater. The median summary prevalence was 32.4% (5042/19 160 individuals [95% CI, 25.8%-39.7%]; Q = 1665.3, $\tau^2 = 0.62$, $I^2 = 98.6\%$) for the Beck Depression Inventory (BDI) with a cutoff score of 10 or greater.

Among medical students who screened positive for depression, 15.7% (110/954 individuals [95% CI, 10.2%-23.4%]; Q = 20.1, $\tau^2 = 0.26$, $I^2 = 70.1$ %) reportedly sought psychiatric or other mental health treatment as assessed by a subset of 7 studies reporting this information (eFigure 1 in the Supplement).

Prevalence of Depression or Depressive Symptoms by Study-Level Characteristics

No statistically significant differences in prevalence estimates were noted between cross-sectional studies (36 632/ 116 628 [27.3%; 95% CI, 24.7%-30.1%]) and longitudinal studies (1301/5728 [26.7%; 95% CI, 19.1%-36.1%]) (test for subgroup differences, Q = 0.02, P = .90) or studies performed in the United States (14 356/36 249 [26.7%; 95% CI, 22.5%-31.3%]) compared with those performed outside the United States (23 577/86 107 [27.4%; 95% CI, 24.5%-30.6%]) (Q = 0.08, P = .78). Studies were further stratified by continent or region in **Figure 8**. Prevalence estimates from studies limited to preclinical students (4866/25 462 [23.7%; 95% CI, 19.5%-28.5%]) did not significantly differ from estimates from studies limited to clinical students (2917/13172 [22.4%; 95% CI, 17.6%-28.2%]) (Q = 0.13, P = .72).

Prevalence estimates did not significantly vary with baseline survey year (survey year range, 1982-2015; slope = 0.2% 1-year increase [95% CI, -0.2% to 0.7%]; Q = 1.17, P = .28). There were no significant associations between prevalence and mean or median age (slope = 0.2% per 1-year increase [95% CI, -1.4% to 1.8%]; Q = 0.07, P = .79) or sex (slope = -1.1% per percentage increase in male study participants [95% CI, -15.9% to 13.7%]; Q = 0.02, P = .88).

When evaluated by Newcastle-Ottawa criteria, higher prevalence estimates were found among studies with more representative participant populations (24 366/68 693; 36.3% [95% CI, 29.9%-43.3%]) compared with those with less representative participant populations (13 567/53 663; 25.4% [95% CI, 22.8%-28.2%]) (Q = 9.6, P = .002; Figure 9). There were no statistically significant differences in prevalence estimates when studies were stratified by sample size, respondent and nonrespondent comparability, validity of ascertainment of depression or depressive symptoms (details regarding

	_	Survey	Year of	No. of		Men,	Instrument and
Source	Country	Years	Training	Students	Age, y	No. (%)	Cutoff Score
Bore et al, ⁵² 2016	Australia	2013	1-5	127	Mean (SD): 23 (5.6)	32 (25.6)	DASS-21 ≥10
De Sousa Lima et al, ⁶⁷ 2010	Brazil	2001	1-4	80	Range: 18-30	45 (56.3)	BDI ≥10
de Melo Cavestro and Rocha, ⁶⁵ 2006	Brazil	2003	1-6	213	Mean (SD): 23.1 (2.3)	109 (51.2)	MINI ≥ DSM IV criteria
Amaral et al, ³⁹ 2008	Brazil	2006	1-6	287	Mean: 21.3	131 (45.7)	BDI ≥10
Costa et al, ⁶¹ 2012	Brazil	2008	5,6	84	NR	NR	BDI ≥10
Serra et al, ¹⁴⁷ 2015	Brazil	2012	1-6	657	Mean: 22.7	255 (38.8)	BDI ≥10
Castaldelli-Maia et al, ⁵⁵ 2012	Brazil	2001-2006	1-6	465	NR	NR	BDI ≥15
Alexandrino-Silva et al, ³⁴ 2009	Brazil	2006-2007	1-6	336	Mean (SD): 22.4 (2.5)	105 (31)	BDI ≥21
Paro et al, ¹³⁰ 2010	Brazil	2006-2007	1-6	352	Mean (SD): 22.3 (2.4)	134 (38.4)	BDI >9
Bassols et al, ⁴⁹ 2014	Brazil	2010-2011	1,6	232	Mean (SD): 23.1 (3.2)	117 (50.4)	BDI ≥11
Del-Ben et al, ²⁰⁰ 2013	Brazil	NR	1	85	Mean (SD): 19.1 (1.6)	58 (68.2)	BDI ≥10
.eão et al, ⁶⁶ 2011	Brazil	NR	6	111	Mean (SD): 24.6 (1.4)	87 (56)	BDI ≥12
Hirata et al, ⁸⁷ 2007	Brazil	NR	1-2	161	Mean (SD): 22.1 (2.1)	77 (47.8)	BDI >10
Baldassin et al, ⁴⁷ 2008	Brazil	NR	1-6	481	Mean (SD): 21.9 (2.4)	195 (40.5)	BDI ≥10
Matheson et al, ¹¹⁷ 2016	Canada	2013	1-4	232	NR	NR	K-10 ≥20
lelmers et al, ⁸⁴ 1997	Canada	1994-1995	1-4	356	Mean (SD): 23.5 (2.6)	185 (52)	DSP >50
Berner et al, ⁵¹ 2014	Chile	2012	1-5	384	Mean (SD): 20.8 (1.8)	224 (58.3)	GHQ-12 ≥5
ang, ¹⁶³ 2005	China	2003	2	121	NR	0	Zung-SDS ≥50
hen et al, ¹⁵¹ 2009	China	2006	1	313	Mean (SD): 23.8 (1.8)	NR	Zung-SDS ≥53
Van et al, ⁴ 2012	China	2010	1-5	4063	Mean (SD): 20.5 (1.1)	1895 (46.6)	Zung-SDS ≥50
obowale et al, ¹⁶⁰ 2014	China	2012	2-3	348	NR	NR	PHQ-9 ≥10
ihi et al, ¹⁵⁴ 2015	China	2014	1-5	1738	Mean (SD): 21.4 (1.6)	586 (33.7)	CES-D ≥16
ihi et al, ¹⁵³ 2016	China	2014	1-7	2925	Mean (SD): 21.7 (2)	1028 (35.2)	CES-D ≥16
Pan et al, ¹²⁹ 2016	China	2013-2014	1-5	8819	Mean (SD): 20.7 (1.6)	3415 (37.9)	BDI ≥14
iao et al, ¹¹⁰ 2010	China	NR	1	487	Mean (SD): 18.5 (0.8)	181 (37.4)	Zung-SDS ≥50
Sun et al, ¹⁶² 2011	China	NR	1-2	10140	Mean (SD): 19.6 (1.3)	4680 (46.2)	BDI ≥10
/ang et al, ⁶ 2014	China	NR	1-5	1137	Range: 17-24	624 (54.9)	SCL-90 >2
Pinzón-Amado et al, ¹³⁷ 2013	Colombia	2006	1-6	973	Mean (SD): 20.3 (2.3)	414 (43)	CES-D ≥16
Amir and Gillany, ⁴⁰ 2010	Egypt	2010	1-6	311	Mean (SD): 20.7 (2.4)	164 (52.7)	HADS-D ≥8
brahim and Abdelreheem, ⁸⁹ 2015	Egypt	2013	1	164	NR	82 (50)	BDI ≥17
Abdel Wahed and Hassan, ²⁷	Egypt	2015	1-4	442	Mean (SD): 20.2 (1.9)	172 (38.9)	DASS-21 ≥10
Eller et al, ¹⁸⁴ 2006	Estonia	2003	1-6	413	Mean (SD): 21.3 (2.5)	95 (23)	EST-Q ≥12
/aysse et al, ¹⁷¹ 2014	France	2012-2013	2	197	Mean (SD): 19.7 (0.9)	79 (39.9)	HADS-D ≥8
Prinz et al, ² 2012	Germany	2008	4, 5	73	NR	54 (74)	HADS-D ≥11
oltmer et al, ¹⁷² 2012	Germany	2010-2011	1, 2, 5	153	Mean (SD): 25.6 (3.1)	44 (28.7)	HADS-D ≥11
Kötter et al, ¹⁰⁷ 2014	Germany	2011-2012	1	350	Mean (SD): 20.9 (3.2)	118 (33.7)	HADS-D ≥8
Vege et al, ¹⁷⁴ 2016	Germany	2012-2013	1	590	Mean (SD): 21.1 (3.9)	177 (29.9)	PHQ-9 >10
urkat et al, ¹⁰⁰ 2011	Germany	NR	1,4	651	NR	252 (38.7)	BDI ≥11
Cohls et al, ¹⁰⁵ 2012	Germany	NR	NR	419	NR	122 (29.1)	ADS-K >17
lasioudis et al, ¹²⁶ 2015	Greece	2013	1-3	146	Mean (SD): 19.8 (1)	91 (62.3)	Zung-SDS >45
Chan, ⁵⁷ 1992	Hong Kong	NR	1	95	Mean (range): 19.6 (18-29)	64 (67.4)	BDI ≥19
Chan, ⁵⁶ 1991	Hong Kong	NR	1-4	335	Mean (SD): 20.1 (1.6)	239 (71.3)	BDI ≥10
(umar et al, ²⁶ 2012	India	2008	1-4	400	NR	217 (54.3)	BDI ≥10
Supta and Basak, ⁸² 2013	India	2008	1-5	150	Range: 18-26	104 (69.3)	BDI ≥10
David and Hamid Hashmi, ⁶⁴ 2013	India	2003	1	128	Mean (range): 17.9 (17-21)	46 (35.9)	BDI ≥17
/ankar et al, ¹⁷⁰ 2014	India	2012	1-4	331	Mean (SD): 19.8 (1.4)	178 (53.8)	PHQ-9 ≥10
qbal et al, ⁹⁵ 2015	malu	2012	1-4	353	Mean (SD): 20.8 (1.5)	145 (41.1)	DASS-42 ≥10

(continued)

Table 1. Selected Characteristic	s of the 183 Stu	dies of Depres	sion or Dep	ressive Syn	nptoms ^a (continued)		
Source	Country	Survey Years	Year of Training	No. of Students	Age, y	Men, No. (%)	Instrument and Cutoff Score
Ali and Vankar, ³⁷ 1994	India	NR	1-3	215	Mean (range): 19.6 (17-25)	132 (61.4)	Zung-SDS ≥50
Supe, ³ 1998	India	NR	1-3	238	NR	128 (53.8)	Zung-SDS ≥40
Sidana et al, ¹⁵⁶ 2012	India	NR	1-5	237	NR	126 (53.2)	PHQ-9 ≥10
Bayati et al, ⁹ 2009	Iran	2008	NR	172	NR	NR	GHQ-28 ≥23
Akbari et al, ³¹ 2014	Iran	2011	NR	138	NR	NR	GHQ-28 >6
Farahangiz et al, ⁷⁶ 2016	Iran	2014	1-4	208	Mean (SD): 20.7 (1.1)	82 (39.4)	GHQ-28 ≥23
Vahdat Shariatpanaahi et al, ¹⁵⁰ 2007	Iran	2004-2005	NR	192	Mean (SD): 24.5 (1.6)	0	BDI ≥10
Aghakhani et al, ²⁹ 2011	Iran	NR	NR	628	Mean (SD): 22 (0.3)	334 (53.2)	BDI ≥10
Ashor, 43 2012	Iraq	2010-2011	1-6	269	NR	147 (54.6)	Zung-SDS ≥50
Lupo and Strous, 111 2011	Israel	NR	1-6	119	Mean (SD): 25.1 (2.8)	NR	BDI-II ≥10
Peleg-Sagy and Shahar, ¹³¹ 2012	Israel	NR	1-7	60	Mean (SD): 27 (2.9)	0	CES-D≥16
Peleg-Sagy and Shahar, ²⁰⁵ 2013	Israel	NR	1, 4, 7	192	Mean (SD): 26.6 (2.6)	0	CES-D≥16
Yoon et al, ¹⁷⁹ 2014	Korea	NR	2, 3, 5	174	Mean (SD): 23.3 (2.8)	96 (55.2)	PHQ-9 ≥10
Naja et al, ¹²⁵ 2016	Lebanon	2014	2-5	340	NR	145 (42.6)	PHQ-9 ≥10
Mehanna and Richa, 119 2006	Lebanon	2003-2004	1-6	356	NR	NR	BDI ≥8
Bunevicius et al, ⁵³ 2008	Lithuania	2005	NR	338	Mean (SD): 21 (1)	73 (21.6)	HADS-D ≥8
Mancevska et al, ¹¹⁴ 2008	Macedonia	2007-2008	1-2	354	NR	120 (33.9)	BDI ≥17
Sherina et al, ¹⁵² 2004	Malaysia	2002	1-5	396	Mean (range): 21.6 (18-29)	152 (38.4)	GHQ-12 ≥4
Tan et al, ¹⁶⁷ 2015	Malaysia	2013	1-5	537	NR	188 (35)	PHQ-9 ≥10
Yusoff et al, ⁴⁶ 2011	Malaysia	2008	5	92	NR	25 (27.2)	BDI ≥9
Yusoff, 181 2013	Malaysia	2009-2010	1	194	NR	66 (34)	DASS-21 ≥14
Yusoff et al, ²¹⁰ 2013	Malaysia	2010-2011	1	170	NR	57 (32.8)	DASS-21 ≥10
Saravanan and Wilks, 145 2014	Malaysia	NR	1-5	358	NR	177 (49.4)	DASS-21 ≥10
Manaf et al, ¹¹³ 2016	Malaysia	NR	2-5	206	Mean (SD): 19.5 (2.6)	0	PHQ-9 ≥5
Guerrero López et al, ⁷ 2013	Mexico	2007	1	455	Mean (SD): 18.3 (1.2)	139 (30.5)	CES-D ≥16
Romo-Nava et al, ¹⁴² 2016	Mexico	2011	1-5	1068	NR	421 (39.4)	PHQ-9 ≥10
Melo-Carrillo et al, ¹²⁰ 2012	Mexico	2006-2007	1-4	302	NR	NR	BDI ≥10
Nava et al, ¹²⁷ 2013	Mexico	2010-2011	1, 5	1871	NR	707 (37.9)	PHQ-9 ≥10
El-Gilany et al, ⁷⁵ 2008	Multiple	2007	1-6	588	Mean: 20.8	588 (100)	HADS-D ≥12
Seweryn et al, ¹⁴⁸ 2015	Multiple	2015	1-6	1262	Median: 22	345 (27.3)	BDI ≥10
Sreeramareddy et al, ¹⁶¹ 2007	Nepal	2005-2006	NR	407	Mean (SD): 20.7 (1.8)	227 (55.8)	GHQ-12 ≥4
Basnet et al, ⁴⁸ 2012	Nepal	2008-2009	1, 3	94	Mean (SD): 21.2 (1.7)	57 (60.6)	Zung-SDS ≥50
Borst et al, ¹⁹⁷ 2015	Netherlands	2010-2011	1-6	951	Mean (SD): 23 (2.6)	279 (29)	BSI-DEP >0.41
Carter et al, ⁵⁴ 2014	New Zealand	2010	4-6	198	Mean (SD): 23.5 (2.1)	75 (38.1)	DASS-21 ≥14
Samaranayake and Fernando, ¹⁴⁴ 2011	New Zealand	2008-2009	3	255	Median (range): 20 (18-36)	123 (48.2)	PHQ-9 ≥10
Oku et al, ¹²⁸ 2015	Nigeria	2010	1, 2, 4, 5	451	Mean (SD): 23.4 (4.4)	288 (63.8)	GHQ-12 ≥4
Aniebue and Onyema, ⁴² 2008	Nigeria	2008-2009	NR	262	Mean (SD): 23.7 (2.7)	133 (50.8)	Zung-SDS ≥50
Rab et al, ¹³⁸ 2008	Pakistan	2002	1-5	87	Mean (SD): 20.7 (1.9)	0	HADS-D ≥8
Jadoon et al, ⁹⁷ 2010	Pakistan	2008	1-5	482	Mean (SD): 20.7 (1.8)	257 (53.3)	AKUADS ≥19
Marwat, ¹¹⁶ 2013	Pakistan	2011	3	166	NR	73 (28.7)	Zung-SDS ≥50
Imran et al, ⁹² 2016	Pakistan	2013	NR	527	Mean (SD): 20.2 (2.3)	282 (53.5)	GHQ-12 >15
Khan et al, ¹⁰³ 2015	Pakistan	2014	3	110	Mean: 21	55 (50)	HADS-D ≥8
Ali et al, ³⁶ 2015	Pakistan	2014	1-2	182	NR	114 (62.6)	AKUADS >19
Rizvi et al, ¹⁴⁰ 2015	Pakistan	2014	1-5	66	Mean (SD): 22.2 (1.3)	28 (40)	DASS-42 ≥10
Alvi et al, ³⁸ 2010	Pakistan	2007-2008	2-5	279	Mean (SD): 21.4 (1.4)	77 (27.6)	BDI-II ≥14
Waqas et al, ¹⁷³ 2015	Pakistan	2014-2015	1-5	409	Mean (SD): 19.9 (1.3)	123 (30)	HADS-D ≥8
Inam et al, ⁹³ 2003	Pakistan	NR	1-4	189	NR	60 (31.7)	AKUADS ≥19

(continued)

2218 JAMA December 6, 2016 Volume 316, Number 21

Table 1. Selected Characteristics of the 183 Studies of Depression or Depressive Symptoms^a (continued)

Source	Country	Survey Years	Year of Training	No. of Students	Age, y	Men, No. (%)	Instrument and Cutoff Score
Khan et al, ¹¹ 2006	Pakistan	NR	1-5	142	Mean (SD): 21.3 (1.9)	59 (41.5)	AKUADS ≥19
Perveen et al, ¹³³ 2016	Pakistan	NR	1,5	1000	NR	431 (43.1)	QIDS ≥9
Mojs et al, ¹²² 2015	Pakistan	NR	NR	477	NR	NR	KADS ≥6
Phillips et al, ¹³⁴ 2006	Panama	2005	1-6	122	NR	63 (51.6)	Zung-SDS ≥50
Pereyra-Elías et al, ¹³² 2010	Peru	2010	1-4	590	Mean (SD): 19 (2.5)	184 (28.9)	Zung SF ≥22
/alle et al, ¹⁶⁹ 2013	Peru	2010	1-6	615	Mean (SD): 22 (4.5)	357 (58)	Zung-SDS ≥50
Walkiewicz et al, ²⁰⁹ 2012	Poland	1999-2005	2	178	NR	NR (69)	MMPI-D >70
Adamiak et al, ²⁸ 2004	Poland	NR	2,4	263	Mean: 22.3	NR	BDI ≥12
nam, ⁹⁴ 2007	Saudi Arabia	2002	1-3	226	NR	149 (65.9)	AKUADS ≥19
Aziz et al, ⁴⁵ 2011	Saudi Arabia	2010	1-5	295	Mean (SD): 21.6 (1.7)	0	BDI-II ≥20
AlFaris et al, ³⁵ 2014	Saudi Arabia	2011	1-2	543	NR	340 (62.6)	BDI-II ≥14
brahim et al, ⁹¹ 2013	Saudi Arabia	2012	2-6	558	Mean (SD): 21.7 (1.8)	300 (50.3)	HADS-D ≥11
brahim et al, ⁹⁰ 2013	Saudi Arabia	2010-2011	2-6	450	Mean (SD): 21.1 (1.4)	0	HADS-D ≥11
Culsoom and Afsar, 108 2015	Saudi Arabia	2012-2013	1-5	442	NR	274 (62)	DASS-21 ≥14
Al-Faris et al, ⁸ 2012	Saudi Arabia	NR	1-5	797	Mean (SD): 21.6 (1.6)	590 (74)	BDI ≥10
aeed et al, ¹⁴³ 2016	Saudi Arabia	NR	NR	80	Mean (SD): 25.9 (1.5)	55 (68.8)	K-10 ≥20
Ristić-Ignjatović et al, ¹³⁹ 1013	Serbia	2002-2012	4	615	Mean (SD): 23.6 (1.5)	239 (36.8)	BDI ≥10
/iletic et al, ¹²¹ 2015	Serbia	2012-2013	1, 3, 6	1294	Mean (SD): 21.9 (2.8)	500 (38.6)	PHQ-9 ≥10
illay et al, ¹³⁶ 2016	South Africa	NR	1-5	230	Mean: 21	66 (28.7)	Zung-SDS >30
eong et al, ⁹⁹ 2010	South Korea	2008	1-2	89	NR	0	CES-D ≥16
im and Roh, ¹⁰⁴ 2014	South Korea	2011	1-2	122	NR	92 (75.4)	BDI ≥10
hoi et al, ⁶⁰ 2015	South Korea	2013	1-4	534	NR	308 (57.7)	BDI-II ≥17
oh et al, ¹⁴¹ 2009	South Korea	2006-2007	1-4	7357	NR	NR	BDI ≥16
ahlin et al, ⁶³ 2011	Sweden	2006	NR	408	Median (range): 24 (22-27)	157 (36.5)	MDI >27
Dahlin et al, ⁶² 2005	Sweden	2001-2002	1, 3, 6	309	Mean (range): 26.1 (18-44)	126 (39.8)	DSM-IV criteria A a C
Kongsomboon, ¹⁰⁶ 2010	Thailand	2008	1-6	593	Mean (range): 20.7 (15-27)	243 (41)	HRSRS ≥25
ngkurawaranon et al, ⁴¹ 2016	Thailand	2013	2-6	1014	Mean (SD): 20.8 (1.5)	476 (46.9)	PHQ-9 ≥9
N Wongpakaran and T Vongpakaran, ¹⁷⁷ 2010	Thailand	NR	1-5	368	Mean (SD): 20.8 (1)	155 (42)	TDI >35
'oussef, ¹⁸⁰ 2016	Trinidad and Tobago	NR	1-3	381	Mean (SD): 22.4 (3)	126 (0.3)	PHQ-9 ≥10
büleç et al, ⁸¹ 2005	Turkey	1993	1-6	668	Mean (SD): 21.1 (2)	658 (96.2)	BDI ≥17
kvardar et al, ³² 2003	Turkey	2002	1,6	447	Mean (SD): 21 (1.2)	272 (39.1)	HADS-D ≥7
Iarakoğlu et al, ¹¹⁵ 2006	Turkey	2006	1-2	331	Mean (SD): 19.5 (1.4)	186 (56.2)	BDI ≥10
layda et al, ¹¹⁸ 2010	Turkey	2009	1-5	202	Mean (SD): 20.5 (2.2)	85 (40.1)	BDI ≥17
'ilmaz et al, ¹⁷⁸ 2014	Turkey	2010	1-6	995	Mean (SD): 21.1 (1.9)	517 (52)	BDI ≥10
ktekin et al, ¹⁹⁶ 2001	Turkey	1996-2002	1-2	119	NR	NR	GHQ-12 ≥4
araoğlu and Şeker, ¹⁰¹ 2011	Turkey	2008-2009	1-3	485	Mean (SD): 19.5 (1.5)	272 (56.1)	HADS-D ≥8
aykan et al, ⁵⁰ 2012	Turkey	NR	6	193	Mean (SD): 24.5 (1.5)	107 (55.4)	DASS-42 ≥10
kvardar et al, ³³ 2004	Turkey	NR	1,6	166	NR	NR	HADS-D ≥7
aya et al, ¹⁰² 2007	Turkey	NR	NR	352	NR	226 (64.2)	BDI ≥17
hmed et al, ³⁰ 2009	UAE	2008	1-5	165	NR	0	BDI ≥10
ames et al, ⁹⁸ 2013	UK	2007	1	324	NR	194 (60)	GHQ-12 ≥4
lonney et al, ⁸⁸ 2010	UK	2008	NR	553	Mean (SD): 21.6 (3)	220 (39.8)	PHQ-9 ≥10
shton and Kamali, ⁴⁴ 1995	UK	1993-1994	2	186	Mean (SD): 20.4 (1.8)	77 (40.7)	HADS-D ≥8
lewbury-Birch et al, ²⁰⁴ 2001	UK	1995, 1998	5	114	NR	38 (33.3)	HADS-D ≥8
Quince et al, ²⁰⁶ 2012	UK	2007-2010	1-6	2155	NR	122 (43.2)	HADS-D ≥8
iuthrie et al, ²⁰¹ 1998	UK	NR	1	172	NR	88 (51.2)	GHQ-12 ≥4
ickard et al, ¹³⁵ 2000	UK	NR	2	136	NR	46 (33.8)	HADS-D ≥8

(continued)

SourceSoure	Table 1. Selected Characteristic	s of the 183 S	tudies of Depres	sion or Dep	oressive Syn	nptoms ^a (continued)		
Hendryx et al, ⁸⁵ 1991 US 1988 1 110 Mean (SD): 24.1 (3.1) 70 (63.6) BD l= 10 Givens and Tija, ⁷² 2002 US 1994 1.2 194 NR 83 (3) BD l= 78 Dyrby et al, ⁷² 2006 US 2004 NR 545 NR 246 (45.4) PRIME-MD Dyrby et al, ⁷² 2007 US 2005 1.4 268 Mean (SD): 26 (3.2) 1070 (40) CES-D 216 Simit et al, ¹²⁹ 2011 US 2008 1.5 440 Mean (SD): 25.7 (4.1) 444 (100) CES-D 216 Sindet et al, ¹²⁵ 2011 US 2008 1.5 1241 Mean (SD): 25.7 (4.1) 444 (100) CES-D 216 Sindet et al, ¹²⁵ 2011 US 2009 1.4 2561 NR 210 (41.6) PHQ-9210 Umsstt et al, ¹²⁵ 2013 US 2009 1.4 2661 NR 150 (44) PRIME-MD Darby et al, ⁴² 2016 US 2012 1.4 2661 NR 150 (44) PRIME-MD	Source	Country				Age, y		
Givens and Tija, ⁷⁴ 2002 US 1994 1-2 194 NR 83 (43) BDI-SF 28 Thomas et al, ¹⁶⁴ 2005 US 2004 NR 245 (45) PRIME-MD Shah et al, ¹⁶⁴ 2005 US 2005 1-4 2633 Mean (SD): 26 (3.2) 1076 (40) CES-D 219 Dyrby et al, ¹⁷ 2007 US 2006 1-4 1691 NR 777 (46) PRIME-MD Sinich et al, ¹⁵⁵ 2011 US 2008 1-5 440 Mean (SD): 25.7 (4.1) 844 (100) CES-D 216 Sinich et al, ¹⁵⁵ 2011 US 2008 1-5 1241 Mean (SD): 25.7 (4.1) 844 (100) CES-D 216 Sinich et al, ¹⁵⁵ 2011 US 2009 1-4 506 NR 210 (41.6) PHQ-9 210 Wirmatt et al, ¹⁵⁶ 2010 US 2009 1-4 2661 NR 130 (41.4) PRIME-MD Lackon et al, ¹⁵⁶ 2016 US 2012 1-4 4354 Mean (range): 25 (22-32) 197 (45.3) PRIME-MD Lackon et al, ¹⁵⁶	Herzog et al, ⁸⁶ 1987	US	1985	1-2	200	Mean (range): 23.1 (19-31)	NR	BDI ≥10
Thomas et al, ¹⁸⁴ 2007 US 2044 1-4 535 NR 248 (45,4) PRIME-MD Shah et al, ¹⁴⁹ 2009 US 2005 1-4 2683 Mean (5D): 26 (3.2) 1076 (40) CES-D 219 Dybye et al, ¹⁷² 2007 US 2006 1-4 1691 NR 777 (46) PRIME-MD Smith et al, ¹⁵² 2011 US 2008 1-5 440 Mean (Gap): 25.7 (4.1) 844 (100) CES-D 216 Sinidel et al, ¹⁵² 2010 US 2008 1-5 144 Mean (SD): 25.7 (4.1) 844 (100) CES-D 216 Schwenk et al, ¹⁴⁶ 2010 US 2009 1-4 504 NR 210 (4.1.6) PHQ-9 210 Wimsstet et al, ¹⁷⁵ 2012 US 2001 1-4 2661 NR 1352 (5.1.4) PRIME-MO Chang et al, ¹⁶⁵ 2012 US 2012 1-4 4354 Media (range): 25 (2:2.2) 1957 (45.3) PRIME-MD Dybye et al, ¹⁶⁵ 2015 US 2012 1-4 153 NR 75 (46.6) PHQ-9 210	Hendryx et al, ⁸⁵ 1991	US	1988	1	110	Mean (SD): 24.1 (3.1)	70 (63.6)	BDI ≥10
Dyrby et al, ⁷² 2006 US 2004 NR 545 NR 245 (45) PRIME-MD Shah et al, ⁷⁴ 2007 US 2006 1-4 2683 Mean (Gauge): 26.3 (18-51) 480 CES to ±19 Dyrby et al, ⁷² 2017 US 2006 1-5 480 Mean (Gauge): 26.3 (18-51) 480 CES to ±16 Simith et al, ¹⁵² 2011 US 2008 1-5 484 Mean (SD): 25.7 (4.1) 844 (100) CES to ±16 Simith et al, ¹⁵² 2011 US 2008 1-4 505 NR 210 (41.6) PHQ-9 ±10 Wimsatt et al, ¹⁵² 2015 US 2009 1-4 505 NR 210 (41.6) PHQ-9 ±10 Dyrby et al, ⁶⁹ 2012 US 2009 1-4 454 Median (range): 25 (22-32) 195 (43.3) RNM-MD Chang et al, ⁵⁹ 2012 US 2012 1-4 4354 Median (range): 25 (22-32) 195 (43.3) RNM-MD Dyrby et al, ⁶⁹ 2015 US 2013 1-5 183 NR 79 (43.3) RNM-MD<	Givens and Tjia,78 2002	US	1994	1-2	194	NR	83 (43)	BDI-SF ≥8
Shahet al, ¹⁴⁹ 2009 US 2005 1-4 2683 Mean (SD): 26 (3.2) 1076 (4D) CES-D ≥19 Dyrbye et al, ¹²⁹ 2017 US 2006 1-4 1691 NR 777 (46) PRIME-MD Smith et al, ¹⁴⁹ 2010 US 2008 1-5 844 Mean (sng): 25.3 (18-51) 844 (00) CES-D ≥16 Shindet et al, ¹⁵⁵ 2011 US 2008 1-5 844 Mean (SD): 25.7 (4.1) 844 (00) CES-D ≥16 Shindet et al, ¹⁵⁵ 2011 US 2009 1-4 505 NR 210 (41.6) PHQ-9 ≥10 Dyrby et al, ⁶⁹ 2010 US 2009 1-4 2661 NR 1352 (51.4) PRIME-MD Chang et al, ⁵⁹ 2010 US 2012 1-4 4354 Median (rnge): 25 (22:32) 1957 (45.3) PRIME-MD Dyrby et al, ⁶⁹ 2015 US 2013 1-4 153 NR 75 (46.6) PHQ-9 ≥10 Gold et al, ⁴⁰⁵ 2015 US 2013 1-4 124 NR 681 (52.0) PHME-MD	Thomas et al, ¹⁶⁴ 2007	US	2004	1-4	535	NR	248 (45.4)	PRIME-MD
Dyrby et al, ¹² 2007 US 2006 1-4 1691 NR 777 (46) PRIME-MD Smith et al, ¹⁴³ 2011 US 2008 1-5 480 Mean (range): 26.3 (18-5) 480 (100) CES-D 16 Smith et al, ¹⁴⁵ 2010 US 2008 1-5 844 Mean (SD): 25.7 (4.1) 844 (100) CES-D 16 Simith et al, ¹⁴⁵ 2010 US 2009 1-4 505 NR 210 (41.6) PH(9-9 10 Wimsatt et al, ¹⁷⁹ 2012 US 2009 1-4 505 NR 210 (41.6) PH(9-9 10 Dyrby et al, ⁶⁹ 2010 US 2009 1-4 266 NR 159 (21.4) PHIME-MD Chang et al, ⁶⁹ 2012 US 2010 1-3 364 NR 160 (44) PRIME-MD Dyrby et al, ⁶⁹ 2015 US 2012 1-4 4354 Median (range): 25 (22-32) 1997 (43.2) PRIME-MD Dyrby et al, ⁶⁹ 2015 US 2013 1-5 183 NR 79 (43.2) PRIME-MD <td< td=""><td>Dyrbye et al,⁷² 2006</td><td>US</td><td>2004</td><td>NR</td><td>545</td><td>NR</td><td>245 (45)</td><td>PRIME-MD</td></td<>	Dyrbye et al, ⁷² 2006	US	2004	NR	545	NR	245 (45)	PRIME-MD
Smith et al. ¹⁵⁹ 2011 US 2008 1-5 480 Mean (range): 26.3 (18-51) 480 (100) CES-D ≥ 16 Smith et al. ¹⁵⁸ 2010 US 2008 1-5 844 Mean (SD): 25.7 (4.1) 844 (100) CES-D ≥ 16 Shindlet al. ¹⁵⁵ 2011 US 2009 1-4 505 NR 210 (41.6) PHQ-9 ≥ 10 Wimsatt et al. ¹²⁵ 2012 US 2009 1-4 2661 NR 1352 (51.4) PRIME-MD Chang et al. ⁶⁹ 2010 US 2010 1-3 364 NR 160 (44) PRIME-MD Dyrby et al. ⁶⁹ 2015 US 2012 2-4 870 NR 442 (50.9) PRIME-MD Dyrby et al. ⁶⁹ 2015 US 2013 1-5 183 NR 75 (45.6) PHQ-9 ≥ 10 Gold et al. ⁶⁹ 2015 US 2013 1-5 183 NR 76 (45.2) PRIME-MD Lapinski et al. ¹⁶⁹ 2016 US 2013 1-5 183 NR 76 (45.2) PRIME-MQ Lapinski et al. ¹⁶⁹ 201	Shah et al, ¹⁴⁹ 2009	US	2005	1-4	2683	Mean (SD): 26 (3.2)	1076 (40)	CES-D ≥19
Smith et al, ¹⁴⁸ 2010 US 2008 1-5 844 Mean (SD): 25.7 (4.1) 844 (100) CES-D ≥ 16 Shinde et al, ¹⁴⁵ 2011 US 2009 1-4 504 NR 210 (41.6) PHQ-9 ≥ 10 Wimsatt et al, ¹⁴⁴ 2010 US 2009 1-4 504 NR 210 (41.6) PHQ-9 ≥ 10 Wimsatt et al, ¹⁴⁵ 2015 US 2009 1-4 2661 NR 1352 (51.4) PRIME-MD Dryby et al, ⁶⁹ 2010 US 2012 1-4 4354 Median (range): 25 (22-32) 1957 (45.3) PRIME-MD Jackson et al, ⁸⁶ 2016 US 2013 1-4 153 NR 75 (46.6) PHME-MD Lapinski et al, ¹⁶⁹ 2016 US 2013 1-5 183 NR 79 (43.2) PRIME-MD Lapinski et al, ¹⁶⁹ 2016 US 2014 1-4 1294 NR 681 (52.6) MPQ-9 ≥ 5 Coccollito et al, ⁷⁰⁹ 2016 US 1982-1984 1-2 304 NR NR BD ≥ 10 <t< td=""><td>Dyrbye et al,⁷¹ 2007</td><td>US</td><td>2006</td><td>1-4</td><td>1691</td><td>NR</td><td>777 (46)</td><td>PRIME-MD</td></t<>	Dyrbye et al, ⁷¹ 2007	US	2006	1-4	1691	NR	777 (46)	PRIME-MD
Shindel et al, ¹⁴⁵ 2011 US 2008 1-5 1241 Mean (SD): 25.4 (3.4) 0 CES-D ≥ 16 Schwenk et al, ¹⁴⁶ 2010 US 2009 1-4 504 NR 210 (41.6) PHQ-9 ≥ 10 Wimsatt et al, ¹⁴⁷ 2010 US 2009 1-4 505 NR 210 (41.6) PHQ-9 ≥ 10 Dynby et al, ⁶⁹ 2012 US 2009 1-4 2661 NR 1532 (51.4) PRIME-MD Chang et al, ⁶⁹ 2012 US 2010 1-3 364 NR 160 (44) PRIME-MD Dynby et al, ⁶⁸ 2015 US 2012 1-4 4354 Median (range): 25 (22-32) 1957 (45.3) PRIME-MD Thompson et al, ¹⁶⁶ 2015 US 2013 1-4 153 NR 79 (43.2) PRIME-MD Lapinski et al, ¹⁰⁹ 2016 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 ≥ 5 Zoccollic et al, ³⁰⁹ 2016 US 1982-1984 1-2 304 NR 801 ≥ 5 Casol et al, ²⁰⁹ 197	Smith et al, ¹⁵⁹ 2011	US	2008	1-5	480	Mean (range): 26.3 (18-51)	480 (100)	CES-D ≥16
Schwenk et al, ¹⁴⁶ 2010 US 2009 1-4 504 NR 210 (41.6) PHQ-9 ≥ 10 Winsatt et al, ¹⁷⁵ 2015 US 2009 1-4 505 NR 210 (41.6) PHQ-9 ≥ 10 Dyrby et al, ⁶⁹ 2010 US 2009 1-4 2661 NR 1352 (51.4) PRIME-MD Jackson et al, ⁶⁹ 2016 US 2010 1-3 364 NR 442 (50.9) PRIME-MD Dyrby et al, ⁶⁸ 2015 US 2012 2-4 870 NR 442 (50.9) PRIME-MD Cold et al, ⁶⁹ 2016 US 2013 1-4 153 NR 79 (43.2) PRIME-MD Lapinski et al, ¹⁰⁹ 2016 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 > 10 Cold et al, ⁸⁰ 2015 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 > 5 Zoccolillo et al, ¹⁸³ 1866 US 1982-1993 1 312 Mean (SD): 25.6 (3.5) 196 (63) BD1 = 5 Rosal et al, ²⁰⁷ 1997	Smith et al, ¹⁵⁸ 2010	US	2008	1-5	844	Mean (SD): 25.7 (4.1)	844 (100)	CES-D ≥16
Winsatt et al. ¹⁷⁵ 2015 US 2009 1-4 505 NR 210 (41.6) PHQ-9 ±10 Dyrby et al. ⁶⁹ 2010 US 2009 1-4 2661 NR 1352 (51.4) PRIME-MD Chang et al. ⁵⁹ 2012 US 2010 1-3 364 NR 160 (44) PRIME-MD Jackson et al. ⁸⁹ 2015 US 2012 1-4 4354 Median (range): 25 (22-32) 1957 (45.3) PRIME-MD Dyrby et al. ⁶⁹ 2016 US 2013 1-4 153 NR 75 (46.6) PHQ-9 ±10 Gold et al. ⁸⁰ 2015 US 2013 1-5 183 NR 79 (43.2) PRIME-MD Lapinski et al. ¹⁰⁰ 2016 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 ±50 Corcolito et al. ¹⁸³ 1986 US 1984-1985 1 312 Mean (SD): 25.6 (3.5) 196 (63) BD1=5 Rosal et al. ²⁰⁷ 1997 US 1987-1993 2 171 NR 140 (51) C55-D 280th percentile Levin	Shindel et al, ¹⁵⁵ 2011	US	2008	1-5	1241	Mean (SD): 25.4 (3.4)	0	CES-D ≥16
Dyrbye et al, ⁶⁹ 2010 US 2009 1-4 2661 NR 1352 (51.4) PRIME-MD Chang et al, ⁵⁹ 2012 US 2010 1-3 364 NR 160 (44) PRIME-MD Jackson et al, ⁶⁹ 2015 US 2012 1-4 4354 Median (range): 25 (22-32) 1957 (45.3) PRIME-MD Dyrbye et al, ⁶⁶ 2015 US 2013 1-4 153 NR 75 (46.6) PHQ-9 210 Gold et al, ⁶⁰ 2015 US 2013 1-4 153 NR 79 (45.2) PRIME-MD Lapinski et al, ¹⁰⁹ 2016 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 25 Zoccollito et al, ¹⁸³ 1986 US 1982-1984 1-2 304 NR NR BD120 Vitaino et al, ²⁰⁰ 1997 US 1987-1993 2 171 NR 140 (51) CFS-D 280th percentile Levine et al, ²⁰⁷ 1997 US 1991-193 232 NR 153 (5.9) 2005-216 Camp et al, ¹⁶⁸ 1904	Schwenk et al, ¹⁴⁶ 2010	US	2009	1-4	504	NR	210 (41.6)	PHQ-9 ≥10
Chang et al, ⁵⁶ 2012 US 2010 1-3 364 NR 160 (44) PRIME-MD Jackson et al, ⁶⁶ 2016 US 2012 1-4 4354 Median (range): 25 (22-32) 1957 (45.3) PRIME-MD Dyrtye et al, ⁶⁶ 2015 US 2013 1-4 153 NR 75 (46.6) PHQ-9 210 Gold et al, ⁶⁹ 2015 US 2013 1-4 153 NR 75 (46.6) PHQ-9 210 Lapinski et al, ¹⁰⁹ 2016 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 25 Zoccolillo et al, ¹⁸³ 1986 US 1982-1984 1-2 304 NR Rol 681 (52.6) PHQ-9 25 Zoccolillo et al, ²⁰⁷ 1997 US 1987-1993 2 171 NR 140 (51) CES-D 280th percentile Camp et al, ⁴⁸⁴ 1994 US 1991-1993 1 232 NR 153 (65.9) Zung-5DS 550 Mosley et al, ⁷⁴³ 1994 US 1992-1993 30 NR RB B01-8 Tjia	Wimsatt et al, ¹⁷⁵ 2015	US	2009	1-4	505	NR	210 (41.6)	PHQ-9 ≥10
Jackson et al, ⁹⁶ 2016 US 2012 1-4 4354 Median (range): 25 (22-32) 1957 (45.3) PRIME-MD Dyrbye et al, ⁶⁶ 2015 US 2012 2-4 870 NR 442 (50.9) PRIME-MD Thompson et al, ¹⁶⁶ 2016 US 2013 1-4 153 NR 75 (46.6) PHQ-9 210 Gold et al, ⁸⁰ 2015 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 25 Zoccolillo et al, ¹⁸³ 1986 US 1982-1984 1-2 304 NR NR BD ≥10 Vitaliano et al, ²⁰⁸ 1988 US 1984-1985 1 312 Mean (SD): 25.6 (3.5) 196 (63) BD ≥5 Rosal et al, ²⁰⁷ 1997 US 1987-1993 2 171 NR 140 (51) CES-D ≥80th percentile Camp et al, ¹⁶⁹ 1994 US 1991-1993 1 232 NR 153 (65.9) Zung-SDS ≥50 Mosley et al, ¹²³ 1994 US 1992-1933 69 Mean (range): 26 (24-37) 47 (68) CES-D ≥16 <tr< td=""><td>Dyrbye et al,⁶⁹ 2010</td><td>US</td><td>2009</td><td>1-4</td><td>2661</td><td>NR</td><td>1352 (51.4)</td><td>PRIME-MD</td></tr<>	Dyrbye et al, ⁶⁹ 2010	US	2009	1-4	2661	NR	1352 (51.4)	PRIME-MD
Dyrbye et al, ⁶⁸ 2015 US 2012 2-4 870 NR 442 (50.9) PRIME-MD Thompson et al, ¹⁶⁶ 2015 US 2013 1-4 153 NR 75 (46.6) PHQ-9 210 Gold et al, ⁶⁰ 2015 US 2013 1-5 183 NR 79 (43.2) PRIME-MD Lapinski et al, ¹⁰⁰ 2016 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 25 Zoccollid et al, ¹⁸³ 1986 US 1982-1984 1-2 304 NR NR BDI 210 Vitaliano et al, ²⁰⁸ 1998 US 1987-1993 1 312 Mean (SD): 25.6 (3.5) 196 (63) BDI 25 Rosal et al, ²⁰⁷ 1997 US 1991-1993 1 232 NR 153 (65.9) Zung-SDS 250 Mostey et al, ¹²³ 1994 US 1991-1993 1 232 NR NS BDI 28 Thompson et al, ¹⁶⁵ 2010 US 2002-2003 3 Mean (range): 26 (24-37) 47 (68) CES-D 216 Goebert et al, ⁷⁹ 2010	Chang et al, ⁵⁹ 2012	US	2010	1-3	364	NR	160 (44)	PRIME-MD
Thompson et al, ¹⁶⁶ 2016 US 2013 1-4 153 NR 75 (46.6) PHQ-9 ≥10 Gold et al, ⁰⁰ 2015 US 2013 1-5 183 NR 79 (43.2) PRIME-MD Lapinski et al, ¹⁰⁹ 2016 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 ≥5 Zoccolillo et al, ¹⁸³ 1986 US 1982-1984 1-2 304 NR NR BDI ≥10 Vitaliano et al, ²⁰⁸ 1988 US 1984-1985 1 312 Mean (SD): 25.6 (3.5) 196 (63) BDI ≥5 Rosal et al, ²⁰⁷ 1997 US 1987-1993 2 171 NR 140 (51) CES-D ≥080th percentile Camp et al, ¹⁹⁸ 1994 US 1992-1993 3 69 Mean (range): 26 (24-37) 47 (68) CES-D ≥16 Levine et al, ²⁰² 2006 US 2001-2003 2 330 NR NR BDI ≥8 Tjia et al, ¹⁶⁸ 2010 US 2002-2003 3 44 NR NR CES-D ≥16 Goebert e	Jackson et al, ⁹⁶ 2016	US	2012	1-4	4354	Median (range): 25 (22-32)	1957 (45.3)	PRIME-MD
Gold et al, ⁸⁰ 2015 US 2013 1-5 183 NR 79 (43.2) PRIME-MD Lapinski et al, ¹⁰⁹ 2016 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 ≥5 Zoccolillo et al, ¹⁸³ 1986 US 1982-1984 1-2 304 NR NR BDI ≥10 Vitaliano et al, ²⁰⁸ 1988 US 1984-1985 1 312 Mean (SD): 25.6 (3.5) 196 (63) BDI ≥5 Rosal et al, ²⁰⁷ 1997 US 1987-1993 2 171 NR 140 (51) CEs-D ≥80th Percentile Camp et al, ¹²⁹ 1994 US 1991-1993 1 232 NR 153 (65.9) Zung-SD ≥50 Mosley et al, ¹²³ 1994 US 1992-1993 3 69 Mean (range): 26 (24-37) 47 (68) CEs-D ≥16 Levine et al, ²⁶⁰ 2006 US 2000-2003 2 330 NR NR BDI ≥8 Thompson et al, ¹⁴⁶ 2010 US 2002-2003 3 44 NR NR CEs-D ≥16 Dy	Dyrbye et al, ⁶⁸ 2015	US	2012	2-4	870	NR	442 (50.9)	PRIME-MD
Lapinski et al. ¹⁰⁹ 2016 US 2014 1-4 1294 NR 681 (52.6) PHQ-9 ≥5 Zoccolillo et al. ¹⁸³ 1986 US 1982-1984 1-2 304 NR NR BDI ≥10 Vitaliano et al. ²⁰⁸ 1988 US 1984-1985 1 312 Mean (SD): 25.6 (3.5) 196 (63) BDI ≥5 Rosal et al. ²⁰⁷ 1997 US 1987-1993 2 171 NR 140 (51) CES-D ≥80th percentile Camp et al. ¹⁹⁸ 1994 US 1991-1993 1 232 NR 153 (65.9) Zung-SDS ≥50 Mosley et al. ¹²³ 1994 US 1992-1993 3 69 Mean (range): 26 (24-37) 47 (68) CES-D ≥16 Levine et al. ⁷⁰² 2006 US 2000-2003 2 330 NR NR BDI ≥8 Tja et al. ¹⁶⁸ 2005 US 2001-2002 1-4 322 Mean (SD): 25.3 (2.6) 175 (54.4) BDI >F ≥8 Thompson et al. ¹⁶⁵ 2010 US 2002-2003 3 44 NR NR CES-D ≥16 <	Thompson et al, ¹⁶⁶ 2016	US	2013	1-4	153	NR	75 (46.6)	PHQ-9 ≥10
Zoccolillo et al, ¹⁸³ 1986 US 1982-1984 1-2 304 NR NR BD ≥ 10 Vitaliano et al, ²⁰⁸ 1988 US 1984-1985 1 312 Mean (SD): 25.6 (3.5) 196 (63) BD ≥ 5 Rosal et al, ²⁰⁷ 1997 US 1987-1993 2 171 NR 140 (51) CES-D ≥80th percentile Camp et al, ¹³⁹ 1994 US 1991-1993 1 232 NR 153 (65.9) Zung-SDS ≥50 Mosley et al, ¹²³ 1994 US 1992-1993 69 Mean (range): 26 (24-37) 47 (68) CES-D ≥16 Levine et al, ⁷⁰² 2006 US 2000-2002 1-4 322 Mean (SD): 25.3 (2.6) 175 (54.4) BD1-5F ≥8 Thompson et al, ¹⁶⁵ 2010 US 2002-2003 3 44 NR RC CES-D ≥16 Goebert et al, ⁷⁹ 2009 US 2003-2004 1-4 1184 NR NR CES-D ≥16 Dyrby et al, ⁷² 2011 US 2006, 2007 3 101 Mean (SD): 25.4 (2.2) 47 (47) BDI-11 ≥14	Gold et al, ⁸⁰ 2015	US	2013	1-5	183	NR	79 (43.2)	PRIME-MD
Vitaliano et al, ²⁰⁸ 1988 US 1984-1985 1 312 Mean (SD): 25.6 (3.5) 196 (63) BD ≥5 Rosal et al, ²⁰⁷ 1997 US 1987-1993 2 171 NR 140 (51) CES-D ≥80th percentile Camp et al, ¹⁹⁸ 1994 US 1991-1993 1 232 NR 153 (65.9) Zung-SDS ≥50 Mosley et al, ¹²³ 1994 US 1992-1993 3 69 Mean (range): 26 (24-37) 47 (68) CES-D ≥16 Levine et al, ⁷⁰² 2006 US 2000-2003 2 330 NR NR BDI ≥8 Tjia et al, ¹⁶⁵ 2010 US 2002-2003 3 44 NR NR CES-D ≥16 Goebert et al, ⁷⁰ 2010 US 2003-2004 1-4 1184 NR NR CES-D ≥16 Dyrby et al, ⁷⁰ 2011 US 2006, 2007 4 1428 NR NR DI-II ≥14 Haglund et al, ¹⁰ 2009 US 2006-2007 1-4 2228 NR 1159 (51.6) PRIME-MD Go	Lapinski et al, ¹⁰⁹ 2016	US	2014	1-4	1294	NR	681 (52.6)	PHQ-9 ≥5
Rosal et al. ²⁰⁷ 1997 US 1987-1993 2 171 NR 140 (51) CES-D ≥ 80th percentile Camp et al. ¹⁹⁸ 1994 US 1991-1993 1 232 NR 153 (65.9) Zung-SDS ≥ 50 Mosley et al. ¹²³ 1994 US 1992-1993 3 69 Mean (range): 26 (24-37) 47 (68) CES-D ≥ 16 Levine et al. ²⁰² 2006 US 2000-2003 2 330 NR NR BD1 ≥ 8 Tjia et al. ¹⁶⁸ 2005 US 2001-2002 1-4 322 Mean (SD): 25.3 (2.6) 175 (54.4) BD1 > 8 Thompson et al. ¹⁶⁵ 2010 US 2002-2003 3 44 NR NR CES-D ≥ 16 Goebert et al. ⁷⁹ 2009 US 2003-2004 1-4 1184 NR NR CES-D ≥ 16 Dyrby et al. ⁷⁰ 2011 US 2006-2007 3 101 Mean (SD): 25.4 (2.2) 47 (47) BDI-II ≥ 14 Dyrby et al. ⁷³ 2008 US 2006-2007 1-4 2228 NR 159 (51.6) PRIME-MD	Zoccolillo et al, ¹⁸³ 1986	US	1982-1984	1-2	304	NR	NR	BDI ≥10
PercentileCamp et al, ¹⁹⁸ 1994US1991-19931232NR153 (65.9)Zung-SDS ≥50Mosley et al, ¹²³ 1994US1992-1993369Mean (range): 26 (24-37)47 (68)CES-D ≥16Levine et al, ²⁰² 2006US2000-20032330NRNRBD1 ≥8Tjia et al, ¹⁶⁸ 2015US2001-20021-4322Mean (SD): 25.3 (2.6)175 (54.4)BD1-SF ≥8Thompson et al, ¹⁶⁵ 2010US2002-2003344NRNRCES-D ≥16Goebert et al, ⁷⁹ 2009US2003-20041-41184NRNRCES-D ≥16Dyrbye et al, ⁷⁰ 2011US2006-20073101Mean (SD): 25.4 (2.2)47 (47)BD1-II ≥14Haglund et al, ¹⁰ 2009US2006-20071-42228NR1159 (51.6)PRIME-MDGhodasara et al, ⁷⁷ 2011US2008-20091-3301NR159 (49.4)PROMIS-T>60Ludwig et al, ⁷⁰² 2015US2010-201433149NR159 (49.4)PROMIS-T>60Udwig et al, ⁷⁰² 2015US2010-20143336NRNRCES-D>16Udwig et al, ⁷⁰² 2015US2010-20143346NR159 (49.4)PROMIS-T>60Udwig et al, ⁷⁰² 2015US2010-20143366NRNRPRIME-MDUdwig et al, ⁷⁰² 2015US2012-20131-44402Median: 251972 (45.1)PRIME-MD	Vitaliano et al, ²⁰⁸ 1988	US	1984-1985	1	312	Mean (SD): 25.6 (3.5)	196 (63)	BDI ≥5
Mosley et al, ¹²³ 1994 US 1992-1993 3 69 Mean (range): 26 (24-37) 47 (68) CES-D ≥16 Levine et al, ²⁰² 2006 US 2000-2003 2 330 NR NR BDI ≥8 Tjia et al, ¹⁶⁸ 2005 US 2001-2002 1-4 322 Mean (SD): 25.3 (2.6) 175 (54.4) BDI-SF ≥8 Thompson et al, ¹⁶⁵ 2010 US 2002-2003 3 44 NR NR CES-D ≥16 Goebert et al, ⁷⁹ 2009 US 2003-2004 1-4 1184 NR NR CES-D ≥16 Dyrby et al, ⁷⁰ 2011 US 2006, 2007, 4 1428 NR NR PRIME-MD Haglund et al, ¹⁰ 2009 US 2006-2007 1 4228 NR 1159 (51.6) PRIME-MD Ghodasara et al, ⁷⁷ 2011 US 2008-2009 1-3 301 NR 159 (51.6) PRIME-MD Ludwig et al, ²⁰³ 2015 US 2010-2011 1 3149 NR 1592 (49.4) PROMIS-T >60 Ludwig et al, ⁷⁴	Rosal et al, ²⁰⁷ 1997	US	1987-1993	2	171	NR	140 (51)	
Levine et al, ²⁰² 2006 US 2000-2003 2 330 NR NR BDI ≥8 Tjia et al, ¹⁶⁸ 2005 US 2001-2002 1-4 322 Mean (SD): 25.3 (2.6) 175 (54.4) BDI-SF ≥8 Thompson et al, ¹⁶⁵ 2010 US 2002-2003 3 44 NR NR CES-D ≥16 Goebert et al, ⁷⁹ 2009 US 2003-2004 1-4 1184 NR NR CES-D ≥16 Dyrby et al, ⁷⁰ 2011 US 2006, 2007, 2009 142 NR NR PRIME-MD Haglund et al, ¹⁰ 2009 US 2006-2007 3 101 Mean (SD): 25.4 (2.2) 47 (47) BDI-II ≥14 Dyrby et al, ⁷³ 2008 US 2006-2007 1-4 2228 NR 1159 (51.6) PRIME-MD Ghodasara et al, ⁷⁷ 2011 US 2008-2009 1-3 301 NR 1592 (49.4) PROMIS-T >60 Ludwig et al, ²⁰³ 2015 US 2010-2014 3 336 NR NR CES-D >16 Dyrbye et al, ⁷⁴ 2014<	Camp et al, ¹⁹⁸ 1994	US	1991-1993	1	232	NR	153 (65.9)	Zung-SDS ≥50
Tjia et al, ¹⁶⁸ 2005 US 2001-2002 1-4 322 Mean (SD): 25.3 (2.6) 175 (54.4) BDI-SF ≥8 Thompson et al, ¹⁶⁵ 2010 US 2002-2003 3 44 NR NR CES-D ≥16 Goebert et al, ⁷⁹ 2009 US 2003-2004 1-4 1184 NR NR CES-D ≥16 Dyrbye et al, ⁷⁰ 2011 US 2006, 2007, 2007, 4 1428 NR NR PRIME-MD Haglund et al, ¹⁰ 2009 US 2006-2007 3 101 Mean (SD): 25.4 (2.2) 47 (47) BDI-II ≥14 Dyrbye et al, ⁷³ 2008 US 2006-2007 1-4 2228 NR 1159 (51.6) PRIME-MD Ghodasara et al, ⁷⁷ 2011 US 2008-2009 1-3 301 NR 154 (51) BDI-II ≥14 Hardeman et al, ⁸³ 2015 US 2010-2011 1 3149 NR 1592 (49.4) PROMIS-T >60 Ludwig et al, ⁷⁴ 2014 US 2012-2013 1-4 4402 Median: 25 1972 (45.1) PRIME-MD Wolf and Rosenstock, ¹⁷⁶ 2016 US 2013-2014 1-4 336	Mosley et al, ¹²³ 1994	US	1992-1993	3	69	Mean (range): 26 (24-37)	47 (68)	CES-D ≥16
Thompson et al, $^{165} 2010$ US $2002-2003$ 3 44 NRNRCES-D ≥ 16 Goebert et al, $^{79} 2009$ US $2003-2004$ $1-4$ 1184 NRNRCES-D ≥ 16 Dyrbye et al, $^{70} 2011$ US $2006, 2007, 4$ 1428 NRNRPRIME-MDHaglund et al, $^{10} 2009$ US $2006-2007$ 3 101 Mean (SD): 25.4 (2.2) 47 (47)BDI-II ≥ 14 Dyrbye et al, $^{73} 2008$ US $2006-2007$ $1-4$ 2228 NR 1159 (51.6)PRIME-MDGhodasara et al, $^{77} 2011$ US $2008-2009$ $1-3$ 301 NR 154 (51)BDI-II ≥ 14 Hardeman et al, $^{83} 2015$ US $2010-2011$ 1 3149 NR 1592 (49.4)PROMIS-T > 60 Ludwig et al, $^{203} 2015$ US $2010-2014$ 3 336 NRNRCES-D > 16 Dyrbye et al, $^{74} 2014$ US $2012-2013$ $1-4$ 4402 Median: 25 1972 (45.1)PRIME-MDWolf and Rosenstock, $^{176} 2016$ US $2013-2014$ $1-4$ 336 NRNRPRIME-MDMousa et al, $^{124} 2016$ US $2013-2014$ $1-4$ 336 NRNRPRIME-MDClark and Zeldow, $^{199} 1988$ USNR 2 110 Mean (SD): 23.6 (2.9) 80 (73) $BDI \geq 8MacLean et al, ^{112} 2016USNR1-4385NRNRPRIME-MD$	Levine et al, ²⁰² 2006	US	2000-2003	2	330	NR	NR	BDI ≥8
Goebert et al, 79 2009US2003-20041-41184NRNRCES-D ≥ 16Dyrbye et al, 70 2011US2006, 2007, 200941428NRNRPRIME-MDHaglund et al, 10 2009US2006-20073101Mean (SD): 25.4 (2.2)47 (47)BDI-II ≥ 14Dyrbye et al, 73 2008US2006-20071-42228NR1159 (51.6)PRIME-MDGhodasara et al, 77 2011US2008-20091-3301NR154 (51)BDI-II ≥ 14Hardeman et al, 83 2015US2010-201113149NR1592 (49.4)PROMIS-T > 60Ludwig et al, 203 2015US2010-20143336NRNRCES-D > 16Dyrbye et al, 74 2014US2012-20131-44402Median: 251972 (45.1)PRIME-MDWolf and Rosenstock, 176 2016US2013-20141-4336NRNRPRIME-MDMousa et al, 124 2016US2013-20141-4336NRNRPRIME-MDClark and Zeldow, 199 1988USNR2110Mean (SD): 23.6 (2.9)80 (73)BDI ≥8MacLean et al, 112 2016USNR1-4385NRNRPRIME-MD	Tjia et al, ¹⁶⁸ 2005	US	2001-2002	1-4	322	Mean (SD): 25.3 (2.6)	175 (54.4)	BDI-SF ≥8
Dyrbye et al, ⁷⁰ 2011 US 2006, 2007, 2009 4 1428 NR NR PRIME-MD Haglund et al, ¹⁰ 2009 US 2006-2007 3 101 Mean (SD): 25.4 (2.2) 47 (47) BDI-II ≥14 Dyrbye et al, ⁷³ 2008 US 2006-2007 1-4 2228 NR 1159 (51.6) PRIME-MD Ghodasara et al, ⁷⁷ 2011 US 2008-2009 1-3 301 NR 154 (51) BDI-II ≥14 Hardeman et al, ⁸³ 2015 US 2010-2011 1 3149 NR 1592 (49.4) PROMIS-T >60 Ludwig et al, ²⁰³ 2015 US 2010-2014 3 336 NR NR CES-D >16 Dyrbye et al, ⁷⁴ 2014 US 2011-2012 1-4 4402 Median: 25 1972 (45.1) PRIME-MD Wolf and Rosenstock, ¹⁷⁶ 2016 US 2013-2014 1-4 336 NR NR PRIME-MD Mousa et al, ¹²⁴ 2016 US 2013-2014 1-4 336 NR NR PRIME-MD Clar	Thompson et al, ¹⁶⁵ 2010	US	2002-2003	3	44	NR	NR	CES-D ≥16
2009 Haglund et al, ¹⁰ 2009 US 2006-2007 3 101 Mean (SD): 25.4 (2.2) 47 (47) BDI-II ≥14 Dyrbye et al, ⁷³ 2008 US 2006-2007 1-4 2228 NR 1159 (51.6) PRIME-MD Ghodasara et al, ⁷⁷ 2011 US 2008-2009 1-3 301 NR 154 (51) BDI-II ≥14 Hardeman et al, ⁸³ 2015 US 2010-2011 1 3149 NR 1592 (49.4) PROMIS-T >60 Ludwig et al, ²⁰³ 2015 US 2010-2014 3 336 NR NR CES-D >16 Dyrbye et al, ⁷⁴ 2014 US 2011-2012 1-4 4402 Median: 25 1972 (45.1) PRIME-MD Wolf and Rosenstock, ¹⁷⁶ 2016 US 2013-2014 1-4 336 NR NR PRIME-MD Glark and Zeldow, ¹⁹⁹ 1988 US NR 2 110 Mean (SD): 23.6 (2.9) 80 (73) BDI ≥8 MacLean et al, ¹¹² 2016 US NR 1-4 385 NR NR PRIME-MD	Goebert et al, ⁷⁹ 2009	US	2003-2004	1-4	1184	NR	NR	CES-D ≥16
Dyrbye et al, ⁷³ 2008 US 2006-2007 1-4 2228 NR 1159 (51.6) PRIME-MD Ghodasara et al, ⁷⁷ 2011 US 2008-2009 1-3 301 NR 154 (51) BDI-II ≥14 Hardeman et al, ⁸³ 2015 US 2010-2011 1 3149 NR 1592 (49.4) PROMIS-T >60 Ludwig et al, ²⁰³ 2015 US 2010-2014 3 336 NR NR CES-D >16 Dyrbye et al, ⁷⁴ 2014 US 2012-2012 1-4 4402 Median: 25 1972 (45.1) PRIME-MD Wolf and Rosenstock, ¹⁷⁶ 2016 US 2013-2014 1-4 130 NR NR PRIME-MD Mousa et al, ¹²⁴ 2016 US 2013-2014 1-4 336 NR NR PRIME-MD Clark and Zeldow, ¹⁹⁹ 1988 US NR 2 110 Mean (SD): 23.6 (2.9) 80 (73) BDI ≥8 MacLean et al, ¹¹¹ 2016 US NR 1-4 385 NR NR PRIME-MD	Dyrbye et al, ⁷⁰ 2011	US		4	1428	NR	NR	PRIME-MD
Ghodasara et al, 77 2011US2008-20091-3301NR154 (51)BDI-II ≥14Hardeman et al, 83 2015US2010-201113149NR1592 (49.4)PROMIS-T >60Ludwig et al, 203 2015US2010-20143336NRNRCES-D >16Dyrbye et al, 74 2014US2011-20121-44402Median: 251972 (45.1)PRIME-MDWolf and Rosenstock, 176 2016US2013-20141-4130NRNRPRIME-MDMousa et al, 124 2016US2013-20141-4336NRNRPRIME-MDClark and Zeldow, 199 1988USNR2110Mean (SD): 23.6 (2.9)80 (73)BDI ≥8MacLean et al, 112 2016USNR1-4385NRNRPRIME-MD	Haglund et al, ¹⁰ 2009	US	2006-2007	3	101	Mean (SD): 25.4 (2.2)	47 (47)	BDI-II ≥14
Hardeman et al, 83 2015US2010-201113149NR1592 (49.4)PROMIS-T >60Ludwig et al, 203 2015US2010-20143336NRNRCES-D >16Dyrbye et al, 74 2014US2011-20121-44402Median: 251972 (45.1)PRIME-MDWolf and Rosenstock, 176 2016US2012-20131-4130NRNRPRIME-MDMousa et al, 124 2016US2013-20141-4336NRNRPRIME-MDClark and Zeldow, 199 1988USNR2110Mean (SD): 23.6 (2.9)80 (73)BD \ge MacLean et al, 112 2016USNR1-4385NRNRPRIME-MD	Dyrbye et al, ⁷³ 2008	US	2006-2007	1-4	2228	NR	1159 (51.6)	PRIME-MD
Ludwig et al, 203 2015US2010-20143336NRNRCES-D > 16Dyrbye et al, 74 2014US2011-20121-44402Median: 251972 (45.1)PRIME-MDWolf and Rosenstock, 176 2016US2012-20131-4130NRNRPRIME-MDMousa et al, 124 2016US2013-20141-4336NRNRPRIME-MDClark and Zeldow, 199 1988USNR2110Mean (SD): 23.6 (2.9)80 (73)BDI ≥8MacLean et al, 112 2016USNR1-4385NRNRPRIME-MD	Ghodasara et al, ⁷⁷ 2011	US	2008-2009	1-3	301	NR	154 (51)	BDI-II ≥14
Dyrbye et al, 74 2014US2011-20121-44402Median: 251972 (45.1)PRIME-MDWolf and Rosenstock, 176 2016US2012-20131-4130NRNRPRIME-MDMousa et al, 124 2016US2013-20141-4336NRNRPRIME-MDClark and Zeldow, 199 1988USNR2110Mean (SD): 23.6 (2.9)80 (73)BDI ≥8MacLean et al, 112 2016USNR1-4385NRNRPRIME-MD	Hardeman et al, ⁸³ 2015	US	2010-2011	1	3149	NR	1592 (49.4)	PROMIS-T >60
Wolf and Rosenstock, ¹⁷⁶ 2016 US 2012-2013 1-4 130 NR NR PRIME-MD Mousa et al, ¹²⁴ 2016 US 2013-2014 1-4 336 NR NR PRIME-MD Clark and Zeldow, ¹⁹⁹ 1988 US NR 2 110 Mean (SD): 23.6 (2.9) 80 (73) BDI ≥8 MacLean et al, ¹¹² 2016 US NR 1-4 385 NR NR PRIME-MD	Ludwig et al, ²⁰³ 2015	US	2010-2014	3	336	NR	NR	CES-D >16
Mousa et al, ¹²⁴ 2016 US 2013-2014 1-4 336 NR NR PRIME-MD Clark and Zeldow, ¹⁹⁹ 1988 US NR 2 110 Mean (SD): 23.6 (2.9) 80 (73) BDI ≥8 MacLean et al, ¹¹² 2016 US NR 1-4 385 NR NR PRIME-MD	Dyrbye et al, ⁷⁴ 2014	US	2011-2012	1-4	4402	Median: 25	1972 (45.1)	PRIME-MD
Clark and Zeldow, ¹⁹⁹ 1988 US NR 2 110 Mean (SD): 23.6 (2.9) 80 (73) BDI ≥8 MacLean et al, ¹¹² 2016 US NR 1-4 385 NR NR PRIME-MD	Wolf and Rosenstock, 176 2016	US	2012-2013	1-4	130	NR	NR	PRIME-MD
MacLean et al, ¹¹² 2016 US NR 1-4 385 NR NR PRIME-MD	Mousa et al, ¹²⁴ 2016	US	2013-2014	1-4	336	NR	NR	PRIME-MD
	Clark and Zeldow, 199 1988	US	NR	2	110	Mean (SD): 23.6 (2.9)	80 (73)	BDI ≥8
Chandavarkar et al, ⁵⁸ 2007 US NR 1-4 427 NR 145 (34) BDI-II ≥21	MacLean et al, ¹¹² 2016	US	NR	1-4	385	NR	NR	PRIME-MD
	Chandavarkar et al, ⁵⁸ 2007	US	NR	1-4	427	NR	145 (34)	BDI-II ≥21
Zeldow et al, ¹⁸² 1987 US NR NR 99 Mean: 25.4 67 (67.7) BDI-II ≥14	Zeldow et al, ¹⁸² 1987	US	NR	NR	99	Mean: 25.4	67 (67.7)	BDI-II ≥14
Smith et al, ¹⁵⁷ 2007 US NR 438 Mean (SD): 24.8 (2.8) 318 (72.6) BDI ≥10	Smith et al, ¹⁵⁷ 2007	US	NR	NR	438	Mean (SD): 24.8 (2.8)	318 (72.6)	BDI ≥10

Abbreviations: ADS-K, General Depression Scale Short Form (in German); AKUADS, Aga Khan University Anxiety and Depression Scale; BDI, Beck Depression Inventory; BDI-SF, BDI Short Form; BSI-DEP, Brief Symptom Inventory Depression; CES-D, Center for Epidemiological Studies Depression Scale; DASS, Depression Anxiety Stress Scale; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; DSP, Derogatis Stress Profile; EST-Q, Emotional State Questionnaire; GHQ, General Health Questionnaire; HADS-D, Hospital Anxiety and Depression Scale; HRSRS, Health-Related Self-Reported Scale; K-10, Kessler Psychological Distress Scale; KADS, Kutcher Adolescent Depression Scale; MDI, Major Depression Inventory; MINI, Mini International Neuropsychiatric Interview; MMPI-D, Minnesota Multiphasic Personality Inventory-Depression Scale; NR, not reported; PHQ-9, 9-item Patient Health Questionnaire; PRIME-MD, Primary Care Evaluation of Mental Disorders; PROMIS-T, Patient-Reported Outcomes Measurement Information System; QIDS, Quick Inventory of Depressive Symptomatology; SCL-90, 90-item Symptom Checklist; TDI, Thai Depression Inventory; UAE, United Arab Emirates; UK, United Kingdom; US, United States; Zung-SDS, Zung Self-Rating Depression Scale; Zung-SF, Zung-SDS Short Form. ^a Studies are ordered alphabetically by country and then by year of survey.

2220 JAMA December 6, 2016 Volume 316, Number 21

Table 2. Selected Characteristics of the 24 Studies of Suicidal Ideation^a

Original Investigation Research

Source	Country	Survey Years	Year of Training	No. of Students	Age, y	Men, No. (%)	Instrument and Cutoff Score or Description ^b
de Melo Cavestro and Rocha, ⁶⁵ 2006	Brazil	2003	1-6	213	Mean (SD): 23.1 (2.3)	109 (51.2)	MINI
Alexandrino-Silva et al, ³⁴ 2009	Brazil	2006-2007	1-6	336	Mean (SD): 22.4 (2.5)	105 (31)	BSI >0
Chen et al, ¹⁸⁸ 2004	China	2002	2-3	892	Mean (SD): 17.5 (0.4)	0	Suicidal ideation over past 12 mo
Wan et al, ⁴ 2012	China	2010	1-5	4063	Mean (SD): 20.5 (1.1)	1895 (46.6)	Suicidal ideation over past 12 mo
Sobowale et al, ¹⁶⁰ 2014	China	2012	2-3	348	NR	NR	Suicidal ideation over past 2 wk (PHQ-9)
Ahmed et al, ¹⁸⁵ 2016	Egypt	2016	NR	612	Mean (SD): 21.2 (1.6)	190 (31)	BSI >24
Okasha et al, ¹⁹² 1981	Egypt	1978-1979	5	516	NR	NR	Suicidal ideation over past 12 mo
Alem et al, ¹⁸⁶ 2005	Ethiopia	2001	NR	273	NR	227 (83.2)	Suicidal ideation over past 1 mo
Wege et al, ¹⁷⁴ 2016	Germany	2012-2013	1	590	Mean (SD): 21.1 (3.9)	177 (29.9)	Suicidal ideation over past 2 wk (PHQ-9)
Tin et al, ¹⁶⁷ 2015	Malaysia	2013	1-5	517	NR	188 (35)	SBQ-R ≥7
Eskin et al, ¹⁸⁹ 2011	Multiple	NR	1-6	646	Mean: 21.4	353 (54.6)	Suicidal ideation over past 12 mo
Menezes et al, ¹⁹¹ 2012	Nepal	2010	2-3	206	Mean (SD): 21 (1.7)	112 (54.4)	Suicidal ideation over past 12 mo (GHQ-28)
Tyssen et al, ¹⁹⁴ 2001	Norway	1993-1994	6	522	Mean (SD): 28 (2.8)	224 (43)	Suicidal ideation over past 12 mo (Paykel Inventory)
Osama et al, ⁵ 2014	Pakistan	2013	1-5	331	Mean (SD): 20.7 (1.7)	135 (41.2)	Suicidal ideation over past 12 mo (GHQ-28)
Khokher and Khan, ¹⁹⁰ 2005	Pakistan	NR	1-5	217	Mean: 22.6	96 (44.2)	Suicidal ideation over past 12 mo (GHQ-28)
Wallin and Runeson, ¹⁹⁵ 2003	Sweden	1998	1, 5	305	Mean: 27.4	127 (41.6)	Suicidal ideation over past 12 mo
Dahlin et al, ⁶² 2005	Sweden	2001-2002	1, 3, 6	296	Mean (range): 26.1 (18-44)	126 (39.8)	Suicidal ideation over past 12 mo (Meehan Inventory)
Amiri et al, ¹⁸⁷ 2013	United Arab Emirates	NR	1-6	115	Mean (SD): 20.7 (2.1)	47 (40.9)	Suicidal ideation over past 12 mo
Thompson et al, ¹⁶⁵ 2010	US	2002-2003	3	43	NR	NR	Suicidal ideation over past 2 wk (PRIME-MD)
Goebert et al, ⁷⁹ 2009	US	2003-2004	1-4	1215	NR	NR	Suicidal ideation over past 2 wk (PRIME-MD)
Dyrbye et al, ⁷³ 2008	US	2006-2007	1-4	2230	NR	1159 (51.6)	Suicidal ideation over past 12 mo (Meehan Inventory)
Dyrbye et al, ⁷⁴ 2014	US	2011-2012	1-4	4032	Median: 25	1972 (45.1)	Suicidal ideation over past 12 mo (Meehan Inventory)
MacLean et al, ¹¹² 2016	US	NR	1-4	385	NR	NR	Suicidal ideation over past 12 mo (Meehan Inventory)
Tran et al, ¹⁹³ 2015	Vietnam	2009	1, 3, 5	2099	Mean (range): 21.5 (18-30)	1052 (50.1)	Suicidal ideation over past 12 mo

Abbreviations: BSI, Beck Scale for Suicidal Ideation; GHQ, General Health Questionnaire; MINI, Mini International Neuropsychiatric Interview; NR, not reported; PHQ-9, 9-item Patient Health Questionnaire; PRIME-MD, Primary Care Evaluation of Mental Disorders; SBQ-R, Revised Suicidal Behaviors Questionnaire; US, United States.

^a Studies are ordered alphabetically by country and then by year of survey. ^b Studies for which a specific instrument is not specified used variably worded

short form screening instruments.

determination of screening instrument validity appear in eMethods 2 in the Supplement), thoroughness of descriptive statistics reporting, or total Newcastle-Ottawa score (P > .05for all comparisons).

Heterogeneity Within Depression Screening Instruments

To identify potential sources of heterogeneity independent of assessment modality, heterogeneity was examined within subgroups of studies using common instruments when at least 6 studies were available (complete results appear in eTable 4 in the Supplement). No significant differences between cross-sectional and longitudinal studies were observed within any instruments when at least 3 studies were in each comparator subgroup.

Heterogeneity was partially accounted for by country with US studies yielding lower depression or depressive symptom prevalence estimates than non-US studies among the 24 studies using the BDI and a cutoff score of 10 or greater (13.0% vs 37.5%, respectively; Q = 12.7, P < .001) and the 13 studies using the Center for Epidemiological Studies Depression Scale (CES-D) and a cutoff score of 16 or greater (34.4% vs 50.3%; Q = 3.8, P = .05). However, this difference was not seen among other instruments.

Level of training did not significantly contribute to betweenstudy heterogeneity among any of the examined instruments. Year of baseline survey significantly contributed to observed statistical heterogeneity among 3 instruments,

Figure 2. Meta-analysis by Scores on the Aga Khan University Anxiety and Depression Scale and the Beck Depression Inventory

ource	No. Depressed	Total No.	Prevalence, % (95% CI)
a Khan University Anxiety and Depres	sion Scale Score	≥19	
Khan et al, ¹¹ 2006	99	142	69.7 (61.5-77.1)
Inam et al, ⁹³ 2003	113	189	59.8 (52.4-66.8)
Inam, ⁹⁴ 2007	114	226	50.4 (43.7-57.1)
Jadoon et al, ⁹⁷ 2010	214	482	44.4 (39.9-49.0)
ga Khan University Anxiety and Depres	sion Scale Score	>19	
Ali et al, ³⁶ 2015	121	182	66.5 (59.1-73.3)
eck Depression Inventory Score ≥5			
Vitaliano et al, ²⁰⁸ 1988	78	312	25.0 (20.3-30.2)
ck Depression Inventory Score ≥8			
Clark and Zeldow, ¹⁹⁹ 1988	45	110	40.9 (31.6-50.7)
Levine et al, ²⁰² 2006	80	330	24.2 (19.7-29.2)
Mehanna and Richa, ¹¹⁹ 2006	101	356	28.4 (23.7-33.4)
eck Depression Inventory Score ≥9			
Yusoff et al, ⁴⁶ 2011	20	92	21.7 (13.8-31.6)
Paro et al, ¹³⁰ 2010	126	352	35.8 (30.8-41.0)
eck Depression Inventory Score ≥10	120	552	55.5 (55.6 41.0)
De Sousa Lima et al, ⁶⁷ 2010	38	80	47.5 (36.2-59.0)
Costa et al, ⁶¹ 2012	34	84	40.5 (29.9-51.7)
Del-Ben et al, ²⁰⁰ 2013	34 16	84	40.5 (29.9-51.7) 18.8 (11.2-28.8)
Hendryx et al, ²⁰⁰ 2013	21	110	19.1 (12.2-27.7)
Kim and Roh, ¹⁰⁴ 2014	42	110	34.4 (26.1-43.6)
Gupta and Basak, ⁸² 2013	68		45.3 (37.2-53.7)
Ahmed et al, ³⁰ 2009		150	()
Vahdat Shariatpanaahi et al, ¹⁵⁰ 2007	47	165	28.5 (21.7-36.0)
Vandat Sharlatpanaani et al, ¹³⁰ 2007 Herzog et al, ⁸⁶ 1987	67	192	34.9 (28.2-42.1)
	14	200	7.0 (3.9-11.5)
Amaral et al, ³⁹ 2008	77	287	26.8 (21.8-32.4)
Melo-Carrillo et al, ¹²⁰ 2012	116	302	38.4 (32.9-44.2)
Zoccolillo et al, ¹⁸³ 1986	68	304	22.4 (17.8-27.5)
Marakoğlu et al, ¹¹⁵ 2006	145	331	43.8 (38.4-49.3)
Chan, ⁵⁶ 1991	161	335	48.1 (42.6-53.6)
Kumar et al, ²⁶ 2012	285	400	71.2 (66.5-75.6)
Smith et al, ¹⁵⁷ 2007	37	438	8.4 (6.0-11.5)
Baldassin et al, ⁴⁷ 2008	184	481	38.3 (33.9-42.8)
Ristić-Ignjatović et al, ¹³⁹ 2013	140	615	22.8 (19.5-26.3)
Aghakhani et al, ²⁹ 2011	328	628	52.2 (48.2-56.2)
Serra et al, ¹⁴⁷ 2015	200	657	30.4 (26.9-34.1)
Al-Faris et al, ⁸ 2012	384	797	48.2 (44.7-51.7)
Yilmaz et al, ¹⁷⁸ 2014	350	995	35.2 (32.2-38.2)
Seweryn et al, ¹⁴⁸ 2015	521	1262	41.3 (38.6-44.1)
Sun et al, ¹⁶² 2011	1699	10140	16.8 (16.0-17.5)
eck Depression Inventory Score >10			
Hirata et al, ⁸⁷ 2007	53	161	32.9 (25.7-40.8)
eck Depression Inventory Score ≥11			
Bassols et al, ⁴⁹ 2014	43	232	18.5 (13.8-24.1)
Jurkat et al, ¹⁰⁰ 2011	123	651	18.9 (16.0-22.1)
eck Depression Inventory Score ≥12			. ,
Leão et al, ⁶⁶ 2011	22	111	19.8 (12.9-28.5)
Adamiak et al, ²⁸ 2004	63	263	24.0 (18.9-29.6)
eck Depression Inventory Score ≥14			(2010 2010)
Pan et al, ¹²⁹ 2016	1751	8819	19.9 (19.0-20.7)
runcial, ZUIU	1/ 71	0013	1J.J (1J.U=2U./)

Prevalence, % (95% CI)

The vertical dashed lines indicate the pooled summary estimate (95% Cl) for all studies in Figures 2-6: 27.2% (37 933/122 356 individuals); 95% Cl, 24.7%-29.9%; $l^2 = 98.9\%$, $\tau^2 = 0.78$, P < .001. The area of each square is proportional to the inverse variance of the estimate. Horizontal lines indicate

95% confidence intervals of the estimate. The studies in Figures 2-6 are ordered alphabetically by screening instrument and then sorted by increasing sample size within each instrument.

Figure 3. Meta-analysis by Scores on the First, Second, and Short Form Versions of the Beck Depression Inventory, Brief Symptom Inventory Depression Scale, and the Center for Epidemiological Studies Depression Scale

Source	No. Depressed	Total No.	Prevalence, % (95% CI)	Weigh
Beck Depression Inventory Score ≥15				
Castaldelli-Maia et al, ⁵⁵ 2012	76	465	16.3 (13.1-20.0)	0.6
Beck Depression Inventory Score ≥16				
Roh et al, ¹⁴¹ 2009	689	7357	9.4 (8.7-10.1)	0.6
Beck Depression Inventory Score ≥17				
David and Hamid Hashmi, 64 2013	15	128	11.7 (6.7-18.6)	0.5
Ibrahim and Abdelreheem, ⁸⁹ 2015	95	164	57.9 (50.0-65.6)	0.5
Mayda et al, ¹¹⁸ 2010	24	202	11.9 (7.8-17.2)	0.5
Kaya et al, ¹⁰² 2007	77	352	21.9 (17.7-26.6)	0.6
Mancevska et al, ¹¹⁴ 2008	36	354	10.2 (7.2-13.8)	0.5
Güleç et al, ⁸¹ 2005	232	668	34.7 (31.1-38.5)	0.6
Beck Depression Inventory Score ≥19			. ,	
Chan, ⁵⁷ 1992	15	95	15.8 (9.1-24.7)	0.5
Beck Depression Inventory Score ≥21				
Alexandrino-Silva et al, ³⁴ 2009	37	336	11.0 (7.9-14.9)	0.5
Beck Depression Inventory II Score ≥10		550	(0.5
Lupo and Strous, ¹¹¹ 2011	30	119	25.2 (17.7-34.0)	0.5
Beck Depression Inventory II Score ≥ 14			(0.5
Zeldow et al, ¹⁸² 1987	15	99	15.2 (8.7-23.8)	0.5
Haglund et al, ¹⁰ 2009	22	101	21.8 (14.2-31.1)	0.5
Alvi et al, ³⁸ 2010	98	279	35.1 (29.5-41.0)	0.6
Ghodasara et al, ⁷⁷ 2011	71	301	23.6 (18.9-28.8)	0.6
AlFaris et al, ³⁵ 2014	317	543	58.4 (54.1-62.6)	- 0.6
Beck Depression Inventory II Score ≥17		742	50.4 (54.1-02.0)	0.0
Choi et al, ⁶⁰ 2015	118	534	22.1 (18.6-25.9)	0.6
Beck Depression Inventory II Score ≥20		554	22.1 (10.0-23.9)	0.8
Aziz et al, ⁴⁵ 2011	117	295	39.7 (34.0-45.5)	- 0.6
Beck Depression Inventory II Score ≥21		293	39.7 (34.0-43.3)	0.0
Chandavarkar et al, ⁵⁸ 2007	21	427	4.0 (2.1.7.4)	0.5
		427	4.9 (3.1-7.4)	0.5
Beck Depression Inventory Short Form		104	22 7 (17 0 20 2)	0.5
Givens and Tjia, 78 2002	46	194	23.7 (17.9-30.3)	0.5
Tjia et al, ¹⁶⁸ 2005	49	322	15.2 (11.5-19.6)	0.6
Brief Symptom Inventory Depression Sc				
Borst et al, ¹⁹⁷ 2015	359	951	37.7 (34.7-40.9)	0.6
Center for Epidemiological Studies Dep				
Thompson et al, ¹⁶⁵ 2010	26	44	59.1 (43.2-73.7)	0.5
Peleg-Sagy and Shahar, ¹³¹ 2012	28	60	46.7 (33.7-60.0)	0.5
Mosley et al, ¹²³ 1994	16	69	23.2 (13.9-34.9)	0.5
Jeong et al, ⁹⁹ 2010	33	89	37.1 (27.1-48.0)	- 0.5
Peleg-Sagy and Shahar, 205 2013	92	192	47.9 (40.7-55.2)	0.6
Guerrero López et al, ⁷ 2013	179	455	39.3 (34.8-44.0)	0.6
Smith et al, ¹⁵⁹ 2011	135	480	28.1 (24.1-32.4)	0.6
Smith et al, ¹⁵⁸ 2010	310	844	36.7 (33.5-40.1)	0.6
Pinzón-Amado et al, ¹³⁷ 2013	385	973	39.6 (36.5-42.7)	0.6
Goebert et al, ⁷⁹ 2009	257	1184	21.7 (19.4-24.2)	0.6
Shindel et al, ¹⁵⁵ 2011	569	1241	45.9 (43.1-48.7)	0.6
Shi et al, ¹⁵⁴ 2015	1230	1738	70.8 (68.6-72.9)	0.6
Shi et al, ¹⁵³ 2016	1954	2925	66.8 (65.1-68.5)	0.6
Center for Epidemiological Studies Dep	ression Scale Scor	e >16		
Ludwig et al, ²⁰³ 2015	131	336	39.0 (33.7-44.4)	0.6
Center for Epidemiological Studies Dep	ression Scale Scor	e ≥19		
Shah et al, ¹⁴⁹ 2009	1093	2683	40.7 (38.9-42.6)	0.6
Center for Epidemiological Studies Dep	ression Scale Scor	e ≥80th pero	centile	
Rosal et al, ²⁰⁷ 1997	67	171	39.2 (31.8-46.9)	- 0.6

The vertical dashed lines indicate the pooled summary estimate (95% Cl) for all studies in Figures 2-6: 27.2% (37 933/122 356 individuals); 95% Cl, 24.7%-29.9%; $l^2 = 98.9\%$, $\tau^2 = 0.78$, P < .001. The area of each square is proportional to the in-

verse variance of the estimate. Horizontal lines indicate 95% confidence intervals of the estimate. The studies in Figures 2-6 are ordered alphabetically by screening instrument and then sorted by increasing sample size within each instrument.

Figure 4. Meta-analysis by Scores on the Depression Anxiety Stress Scale, *Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition*, Criteria A and C, Derogatis Stress Profile, Emotional State Questionnaire, General Depression Scale Short Form, General Health Questionnaire, and the Hospital Anxiety and Depression Scale

Source	No. Depressed	Total No.	Prevalence, % (95% CI)		Weight,
21-Item Depression Anxiety Stress Sca	le Score ≥10				
Bore et al, ⁵² 2016	40	127	31.5 (23.5-40.3)		0.5
Yusoff et al, ²¹⁰ 2013	70	170	41.2 (33.7-49.0)	- - -	0.6
Saravanan and Wilks, ¹⁴⁵ 2014	125	358	34.9 (30.0-40.1)		0.6
Abdel Wahed and Hassan, ²⁷ 2016	266	442	60.2 (55.4-64.8)		0.6
21-Item Depression Anxiety Stress Sca	le Score ≥14				
Yusoff, ¹⁸¹ 2013	58	194	29.9 (23.5-36.9)		0.6
Carter et al, ⁵⁴ 2014	24	198	12.1 (7.9-17.5)		0.5
Kulsoom and Afsar, ¹⁰⁸ 2015	190	442	43.0 (38.3-47.7)		0.6
42-Item Depression Anxiety Stress Sca	le Score ≥10				
Rizvi et al, ¹⁴⁰ 2015	27	66	40.9 (29.0-53.7)		0.5
Baykan et al, ⁵⁰ 2012	57	193	29.5 (23.2-36.5)		0.5
Igbal et al, ⁹⁵ 2015	181	353	51.3 (45.9-56.6)		0.6
Diagnostic and Statistical Manual of M			()		
Dahlin et al. ⁶² 2005	40	309	12.9 (9.4-17.2)		0.5
Derogatis Stress Profile Score >50			(1/12/		0.0
Helmers et al, ⁸⁴ 1997	217	356	61.0 (55.7-66.1)		0.6
Emotional State Questionnaire Score ≥			(-5.7 55.1)		0.0
Eller et al, ¹⁸⁴ 2006	126	413	30.5 (26.1-35.2)		0.6
General Depression Scale Short Form S		.15	50.5 (20.1 55.2)		0.0
Kohls et al, ¹⁰⁵ 2012	107	419	25.5 (21.4-30.0)		0.6
12-Item General Health Questionnaire		415	23.3 (21.4-30.0)		0.0
Aktekin et al. ¹⁹⁶ 2001	57	119	47.9 (38.7-57.2)		0.5
Guthrie et al. ²⁰¹ 1998			36.6 (29.4-44.3)		
James et al, ⁹⁸ 2013	63	172			0.5
	103	324	31.8 (26.8-37.2)		0.6
Sherina et al, ¹⁵² 2004	166	396	41.9 (37.0-47.0)		0.6
Sreeramareddy et al, ¹⁶¹ 2007	85	407	20.9 (17.0-25.2)		0.6
Oku et al, ¹²⁸ 2015	177	451	39.2 (34.7-43.9)		0.6
12-Item General Health Questionnaire					
Berner et al, ⁵¹ 2014	88	384	22.9 (18.8-27.5)		0.6
12-Item General Health Questionnaire					
Imran et al, ⁹² 2016	276	527	52.4 (48.0-56.7)		0.6
28-Item General Health Questionnaire					
Akbari et al, ³¹ 2014	20	138	14.5 (9.1-21.5)		0.5
28-Item General Health Questionnaire					
Bayati et al, ⁹ 2009	93	172	54.1 (46.3-61.7)		0.6
Farahangiz et al, ⁷⁶ 2016	105	208	50.5 (43.5-57.5)		0.6
Hospital Anxiety and Depression Scale	Score ≥7				
Akvardar et al, ³³ 2004	56	166	33.7 (26.6-41.5)		0.5
Akvardar et al, ³² 2003	154	447	34.5 (30.1-39.1)		0.6
Hospital Anxiety and Depression Scale	Score ≥8				
Rab et al, ¹³⁸ 2008	17	87	19.5 (11.8-29.4)		0.5
Khan et al, ¹⁰³ 2015	18	110	16.4 (10.0-24.6)		0.5
Newbury-Birch et al, ²⁰⁴ 2001	5	114	4.4 (1.4-9.9)		0.4
Pickard et al, ¹³⁵ 2000	13	136	9.6 (5.2-15.8)		0.5
Ashton and Kamali, ⁴⁴ 1995	73	186	39.2 (32.2-46.7)		0.6
Vaysse et al, ¹⁷¹ 2014	7	197	3.6 (1.4-7.2)		0.5
Amir and Gillany, ⁴⁰ 2010	88	311	28.3 (23.4-33.7)		0.6
Bunevicius et al, ⁵³ 2008	48	338	14.2 (10.7-18.4)		0.6
Kötter et al, ¹⁰⁷ 2014	12	350	3.4 (1.8-5.9)		0.5
Waqas et al, ¹⁷³ 2015	118	409	28.9 (24.5-33.5)		0.6
Karaoğlu and Seker, ¹⁰¹ 2011	136	485	28.0 (24.1-32.3)		0.6
Quince et al, ²⁰⁶ 2012	142	2155	6.6 (5.6-7.7)		0.6

The vertical dashed lines indicate the pooled summary estimate (95% CI) for all studies in Figures 2-6: 27.2% (37 933/122 356 individuals); 95% CI, 24.7%-29.9%; $l^2 = 98.9\%$, $\tau^2 = 0.78$, P < .001. The area of each square is

proportional to the inverse variance of the estimate. Horizontal lines indicate

95% confidence intervals of the estimate. The studies in Figures 2-6 are ordered alphabetically by screening instrument and then sorted by increasing sample size within each instrument.

Prevalence, % (95% CI)

Figure 5. Meta-analysis by Scores on Several Scales

Source	No. Depressed	Total No.	Prevalence, % (95% CI)		Weight, 9
Hospital Anxiety and Depression Scale Sco	re ≥11			-	
Prinz et al, ² 2012	1	73	1.4 (0.0-7.4)		0.2
Voltmer et al, ¹⁷² 2012	4	153	2.6 (0.7-6.6)		0.4
Ibrahim et al, ⁹⁰ 2013	66	450	14.7 (11.5-18.3)		0.6
Ibrahim et al, ⁹¹ 2013	86	558	15.4 (12.5-18.7)		0.6
Hospital Anxiety and Depression Scale Sco	re ≥12				
El-Gilany et al, ⁷⁵ 2008	127	588	21.6 (18.3-25.1)		0.6
Health-Related Self-Reported Scale Score	≥25		. ,		
Kongsomboon, ¹⁰⁶ 2010	42	593	7.1 (5.2-9.5)		0.5
Kessler Psychological Distress Scale Score		555	7.1 (5.2 5.5)		0.5
Saeed et al, ¹⁴³ 2016	56	80	70.0 (58.7-79.7)		0.5
Matheson et al, ¹¹⁷ 2016	92				0.6
Kutcher Adolescent Depression Scale Scor		232	39.7 (33.3-46.3)		0.6
•			62(12.0.0)		
Mojs et al, ¹²² 2015	30	477	6.3 (4.3-8.9)		0.5
Major Depression Inventory Score >27				-	
Dahlin et al, ⁶³ 2011	37	408	9.1 (6.5-12.3)		0.5
Mini International Neuropsychiatric Interv		criteria			
de Melo Cavestro and Rocha, ⁶⁵ 2006	19	213	8.9 (5.5-13.6)		0.5
Minnesota Multiphasic Personality Invento	ory-Depression	Scale Score	>70		
Walkiewicz et al, ²⁰⁹ 2012	32	178	18.0 (12.6-24.4)		0.5
9-Item Patient Health Questionnaire Score	≥5				
Manaf et al, ¹¹³ 2016	135	206	65.5 (58.6-72.0)		0.6
Lapinski et al, ¹⁰⁹ 2016	537	1294	41.5 (38.8-44.2)		0.6
9-Item Patient Health Questionnaire Score		1201	1110 (0010 1112)		0.0
Angkurawaranon et al, ⁴¹ 2016	100	1014	9.9 (8.1-11.9)		0.6
		1014	9.9 (0.1-11.9)		0.0
9-Item Patient Health Questionnaire Score		150	17.0 (11.4.22.0)		0.5
Thompson et al, ¹⁶⁶ 2016	26	153	17.0 (11.4-23.9)		0.5
Yoon et al, ¹⁷⁹ 2014	24	174	13.8 (9.0-19.8)		0.5
Sidana et al, ¹⁵⁶ 2012	51	237	21.5 (16.5-27.3)		0.5
Samaranayake and Fernando, 144 2011	43	255	16.9 (12.5-22.0)		0.5
Vankar et al, ¹⁷⁰ 2014	88	331	26.6 (21.9-31.7)		0.6
Naja et al, ¹²⁵ 2016	117	340	34.4 (29.4-39.7)		0.6
Sobowale et al, ¹⁶⁰ 2014	47	348	13.5 (10.1-17.6)		0.6
Youssef, ¹⁸⁰ 2016	145	381	38.1 (33.2-43.1)		0.6
Schwenk et al, ¹⁴⁶ 2010	72	504	14.3 (11.3-17.6)		0.6
Wimsatt et al, ¹⁷⁵ 2015	72	505	14.3 (11.3-17.6)		0.6
Tan et al, ¹⁶⁷ 2015	38	537	7.1 (5.1-9.6)		0.5
Honney et al, ⁸⁸ 2010	270	553	48.8 (44.6-53.1)		0.5
Romo-Nava et al, ¹⁴² 2016					
	173	1068	16.2 (14.0-18.5)		0.6
Miletic et al, ¹²¹ 2015	285	1294	22.0 (19.8-24.4)		0.6
Nava et al, ¹²⁷ 2013	79	1871	4.2 (3.4-5.2)		0.6
9-Item Patient Health Questionnaire Score					
Wege et al, ¹⁷⁴ 2016	61	590	10.3 (8.0-13.1)		0.6
Primary Care Evaluation of Mental Disorde	rs				
Wolf and Rosenstock, 176 2016	12	130	9.2 (4.9-15.6)		0.5
Gold et al, ⁸⁰ 2015	7	183	3.8 (1.6-7.7)		0.5
Mousa et al, ¹²⁴ 2016	55	336	16.4 (12.6-20.8)		0.6
Chang et al, ⁵⁹ 2012	217	364	59.6 (54.4-64.7)		0.6
MacLean et al, ¹¹² 2016	33	385	8.6 (6.0-11.8)	· 🛖	0.5
Thomas et al, ¹⁶⁴ 2007	294	535	55.0 (50.6-59.2)		0.6
Dyrbye et al, ⁷² 2006	294	545	54.3 (50.0-58.6)		0.6
Dyrbye et al, ⁶⁸ 2015					
	330	870	37.9 (34.7-41.2)		0.6
Dyrbye et al, ⁷⁰ 2011	541	1428	37.9 (35.4-40.5)		0.6
Dyrbye et al, ⁷¹ 2007	820	1691	48.5 (46.1-50.9)		0.6
Dyrbye et al, ⁷³ 2008	1037	2228	46.5 (44.5-48.6)		0.6
Dyrbye et al, ⁶⁹ 2010	1398	2661	52.5 (50.6-54.4)		0.6
Jackson et al, ⁹⁶ 2016	2528	4354	58.1 (56.6-59.5)		0.6
Dyrbye et al, ⁷⁴ 2014	2552	4402	58.0 (56.5-59.4)		0.6

Prevalence, % (95% CI)

The vertical dashed lines indicate the pooled summary estimate (95% Cl) for all studies in Figures 2-6: 27.2% (37 933/122 356 individuals); 95% Cl, 24.7%-29.9%; l^2 = 98.9%, τ^2 = 0.78, P < .001. The area of each square is proportional to the inverse variance of the estimate. Horizontal lines indicate

95% confidence intervals of the estimate. The studies in Figures 2-6 are ordered alphabetically by screening instrument and then sorted by increasing sample size within each instrument. *DSM-IV*, *Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition*.

Figure 6. Meta-analysis by Scores on the Patient-Reported Outcomes Measurement Information System, Quick Inventory of Depressive Symptomatology, 90-Item Symptom Checklist, Thai Depression Inventory, and the Zung Self-Rating Depression Scale

Source	No. Depressed	Total No.	Prevalence, % (95% CI)		Weight
Patient-Reported Outcomes Measurement Informa	<u> </u>		(-	
Hardeman et al, ⁸³ 2015	316	3149	10.0 (9.0-11.1)		0.6
Quick Inventory of Depressive Symptomatology Sc	ore ≥9			-	
Perveen et al, ¹³³ 2016	524	1000	52.4 (49.3-55.5)		0.6
90-Item Symptom Checklist Score >2				-	
Yang et al, ⁶ 2014	36	1137	3.2 (2.2-4.4)		0.5
Thai Depression Inventory Score >35					
N Wongpakaran and T Wongpakaran, 177 2010	19	368	5.2 (3.1-7.9)		0.5
Zung Self-Rating Depression Scale Score >30					
Pillay et al, ¹³⁶ 2016	166	230	72.2 (65.9-77.9)	-	0.6
Zung Self-Rating Depression Scale Score ≥40					
Supe, ³ 1998	175	238	73.5 (67.4-79.0)		0.6
Zung Self-Rating Depression Scale Score >45				-	
Nasioudis et al, ¹²⁶ 2015	57	146	39.0 (31.1-47.5)		0.5
Zung Self-Rating Depression Scale Score ≥50					
Basnet et al, ⁴⁸ 2012	28	94	29.8 (20.8-40.1)		0.5
Tang, ¹⁶³ 2005	41	121	33.9 (25.5-43.0)		0.5
Phillips et al, ¹³⁴ 2006	26	122	21.3 (14.4-29.6)		0.5
Marwat, ¹¹⁶ 2013	29	166	17.5 (12.0-24.1)		0.5
Ali and Vankar, ³⁷ 1994	51	215	23.7 (18.2-30.0)		0.5
Camp et al, ¹⁹⁸ 1994	42	232	18.1 (13.4-23.7)		0.5
Aniebue and Onyema, ⁴² 2008	61	262	23.3 (18.3-28.9)		0.6
Ashor, ⁴³ 2012	34	269	12.6 (8.9-17.2)	-	0.5
Liao et al, ¹¹⁰ 2010	26	487	5.3 (3.5-7.7)		0.5
Valle et al, ¹⁶⁹ 2013	143	615	23.3 (20.0-26.8)		0.6
Wan et al, ⁴ 2012	1881	4063	46.3 (44.8-47.8)		0.6
Zung Self-Rating Depression Scale Score ≥53					
Shen et al, ¹⁵¹ 2009	99	313	31.6 (26.5-37.1)		0.6
Zung Self-Rating Depression Scale Short Form Sco	re ≥22				
Pereyra-Elías et al, ¹³² 2010	184	590	31.2 (27.5-35.1)	-	0.6
				0 20 40 60 80	100

The vertical dashed lines indicate the pooled summary estimate (95% CI) for all studies in Figures 2-6: 27.2% (37 933/122 356 individuals); 95% CI, 24.7%-29.9%; $l^2 = 98.9$ %, $\tau^2 = 0.78$, P < .001. The area of each square is proportional to the inverse variance of the estimate. Horizontal lines indicate

95% confidence intervals of the estimate. The studies in Figures 2-6 are ordered alphabetically by screening instrument and then sorted by increasing sample size within each instrument.

although the results were inconsistent (ie, 2 analyses suggested that depression was increasing with time, whereas a third suggested it was decreasing). Age and sex were not significantly associated with depression prevalence among any instruments.

Analysis of Longitudinal Studies

The temporal relationship between exposure to medical school and depressive symptoms was assessed in an analysis of 9 longitudinal studies that measured depressive symptoms before and during medical school (**Table 3**). Because studies used different assessment instruments, the relative change in depressive symptoms was calculated for each study individually (ie, follow-up prevalence divided by baseline prevalence) and then the relative changes derived from the individual studies were examined. Overall, the median absolute increase in depressive symptoms was 13.5% (range, 0.6%-35.3%) following the onset of medical training.

Prevalence of Suicidal Ideation Among Medical Students

In an analysis of 24 studies, the crude summary prevalence of suicidal ideation, variably reported as having occurred over the past 2 weeks to the past 12 months, was 11.1% (2043/ 21 002 individuals; 95% CI, 9.0%-13.7%), with significant evidence of between-study heterogeneity (Q = 547.1, $\tau^2 = 0.32$, $I^2 = 95.8\%$, P < .001) (**Figure 10**). The prevalence estimates reported by the individual studies ranged from 4.9% to 35.6%. Sensitivity analysis showed that no individual study affected the overall pooled estimate by more than 1.9% (eTable 5 in the Supplement).

To further characterize the range of the suicidal ideation prevalence estimates identified, stratified meta-analyses were performed by screening instrument and cutoff score. Summary prevalence estimates ranged from 7.4% (69/938 individuals [95% CI, 5.9%-9.2%]; Q = 0.01, $\tau^2 = 0$, $I^2 = 0$ %) over the past 2 weeks for studies using the 9-item Patient Health Questionnaire (PHQ-9) to 24.2% (208/754 individuals Figure 7. Meta-analyses of the Prevalence of Depression or Depressive Symptoms Among Medical Students Stratified by Screening Instrument and Cutoff Score

		Study Samp	le		
Screening Method and Cutoff Score	No. of Studies	No. Depressed	Total No.	Prevalence, % (95% CI)	
Aga Khan University Anxiety and Depression Scale Score ≥19 2 = 98.9%, τ ² = 0.78, P<.001	4	540	1039	55.9 (45.1-66.2)	
Beck Depression Inventory II Score ≥14 I ² =97.2%, τ ² =0.73, P<.001	5	523	1323	29.5 (16.3-47.4)	
Beck Depression Inventory Score ≥8 $l^2 = 81.9\%$, τ ² = 0.09, <i>P</i> = .004	3	226	796	30.2 (22.8-38.7)	
Beck Depression Inventory Short Form Score ≥ 8 $r^2 = 82.6\%$, $\tau^2 = 0.12$, $P = .02$	2	95	516	19.0 (12.1-28.7)	
Beck Depression Inventory Score ≥9 2 = 84.3%, τ ² = 0.20, <i>P</i> = .01	2	146	444	29.0 (17.2-44.6)	
Beck Depression Inventory Score ≥10 ² =98.6%, τ ² =0.62, P<.001	24	5042	19160	32.4 (25.8-39.7)	~
Beck Depression Inventory Score ≥11 I ² = 0%, τ ² = 0, P = .91	2	166	883	18.8 (16.4-21.5)	\$
Beck Depression Inventory Score ≥12 I ² = 0%, τ ² = 0, P = .39	2	85	374	22.8 (18.8-27.3)	\diamond
Beck Depression Inventory Score ≥17 /²=97.1%, τ²=0.75, P<.001	6	479	1868	21.7 (12.0-36.0)	
Center for Epidemiological Studies Depression Scale Score ≥ 16 $t^2 = 99.0\%$, $\tau^2 = 0.61$, $P < .001$	13	5214	10294	42.8 (32.7-53.6)	
21-Item Depression Anxiety Stress Scale Score ≥10 ⁽² =95.3%, τ ² =0.35, P<.001	4	501	1097	41.9 (28.5-56.6)	
21-Item Depression Anxiety Stress Scale Score ≥14 l^2 = 96.3%, τ^2 = 0.58, <i>P</i> <.001	3	272	834	26.5 (13.0-46.6)	
42-Item Depression Anxiety Stress Scale Score ≥10 r^2 = 91.5%, τ ² = 0.28, P<.001	3	265	612	40.4 (26.5-56.0)	
12-Item General Health Questionnaire Score ≥4 ¹² =91.1%, τ ² =0.15, P<.001	6	651	1869	35.7 (28.5-43.6)	
28-Item General Health Questionnaire Score ≥23 $P^2 = 0\%$, τ ² = 0, P = .49	2	198	380	52.1 (47.1-57.1)	
Hospital Anxiety and Depression Scale Score \geq 7 $I^2 = 0\%$, $\tau^2 = 0$, $P = .87$	2	210	613	34.3 (30.6-38.1)	•
Hospital Anxiety and Depression Scale Score ≥ 8 $l^2 = 97.2\%$, $\tau^2 = 0.85$, $P < .001$	12	677	4878	13.6 (8.4-21.3)	
Hospital Anxiety and Depression Scale Score ≥11 I ² =84.8%, τ ² =0.24, P<.001	4	157	1234	9.3 (5.3-15.7)	
Kessler Psychological Distress Scale Score ≥20 I ² = 95.2%, τ ² = 0.76, P<.001	2	148	312	54.9 (26.0-80.8)	
9-Item Patient Health Questionnaire Score ≥5 l^2 = 97.5%, τ^2 = 0.47, P<.001	2	672	1500	53.5 (30.5-75.1)	
9-Item Patient Health Questionnaire Score ≥10 1²=98.0%, τ²=0.67, Ρ<.001	15	1530	8551	18.3 (12.8-25.4)	~
Primary Care Evaluation of Mental Disorders ¹² =98.4%, τ ² =0.19, P<.001	14	10120	20112	37.5 (32.0-43.3)	*
Zung Self-Rating Depression Scale Score ≥50 I ² =98.0%, τ ² =0.76, P<.001	11	2362	6646	21.3 (13.8-31.5)	

Pooled summary estimates are ordered alphabetically by screening instrument. The individual studies contributing to each summary estimate are reported in Figures 2 through 6. The area of each diamond is proportional to the inverse variance of the estimate. Horizontal extremes of the diamonds indicate 95% CIs of the estimate.

[95% CI, 13.0%-40.5%]; Q = 37.2, $\tau^2 = 0.42$, $I^2 = 94.6\%$) over the past 12 months for studies using the 28-item General Health Questionnaire.

The median prevalence of suicidal ideation over the past 12 months reported by 7 studies using variably worded

short-form screening instruments was 10.2% (723/8636 individuals [95% CI, 6.8%-15.0%]; Q = 176.5, $\tau^2 = 0.33$, $I^2 = 96.6$ %). Among the full set of studies, no statistically significant differences in prevalence estimates were

noted by country (United States vs other countries), conti-

		Study Samp	le			
	No. of Studies	No. Depressed	Total No.	Prevalence, % (95% CI)		P Value for Difference
Type of Study						
Cross-sectional ($I^2 = 99.0\%$, $\tau^2 = 0.78$, $P < .001$)	167	36632	116628	27.3 (24.7-30.1)		.90
Longitudinal (I ² = 97.5%, τ ² = 0.75, P < .001)	16	1301	5728	26.7 (19.1-36.1)	\diamond	.90
Academic Year						
Preclinical ($I^2 = 97.8\%$, $\tau^2 = 0.68$, $P < .001$)	45	4866	25 462	23.7 (19.5-28.5)	Image: A start of the start	
Both (<i>I</i> ² = 99.0%, τ ² = 0.67, <i>P</i> < .001)	108	29273	79966	30.4 (27.2-33.9)	♦	.72ª
Clinical ($I^2 = 96.4\%$, $\tau^2 = 0.35$, $P < .001$)	17	2917	13172	22.4 (17.6-28.2)		
Continent or Region						
Africa (I ² =97.5%, τ ² =0.58, P < .001)	6	853	1860	46.3 (31.7-61.6)		
Asia ($I^2 = 99.4\%$, $\tau^2 = 1.14$, $P < .001$)	51	13435	49602	29.1 (23.4-35.6)	\diamond	
Eurasia ($I^2 = 90.4\%$, $\tau^2 = 0.12$, $P < .001$)	10	1288	3958	31.5 (26.8-36.6)		
Europe (<i>I</i> ² = 97.8%, τ ² = 0.65, <i>P</i> < .001)	26	2728	12604	16.9 (12.8-21.9)		- 001
Middle East ($I^2 = 97.0\%$, $\tau^2 = 0.49$, $P < .001$)	20	2414	6610	35.2 (28.5-42.7)	\diamond	<.001
North America (I^2 = 99.0%, τ^2 = 0.61, P < .001)	49	15238	40655	26.7 (22.5-31.2)		
Oceania (I ² = 89.5%, τ ² = 0.31, P < .001)	3	107	580	19.0 (10.8-31.4)		
South America (I^2 = 93.6%, τ^2 = 0.22, P < .001)	18	1870	6487	26.6 (22.4-31.2)		
Country						
All other countries ($I^2 = 98.8\%$, $\tau^2 = 0.83$, $P < .001$)	141	23577	86107	27.4 (24.5-30.6)		.78
United States ($I^2 = 98.9\%$, $\tau^2 = 0.53$, $P < .001$)	42	14356	36249	26.7 (22.5-31.3)		./0
					0 20 40 60 80 Prevalence, % (95% CI)	100

Figure 8. Meta-analyses of the Prevalence of Depression or Depressive Symptoms Among Medical Students Stratified by Study-Level Characteristics

The area of each diamond is proportional to the inverse variance of the estimate. Horizontal extremes of the diamonds indicate 95% CIs of the estimate. ^a Comparison of studies reporting only on preclinical students with those studies reporting only on clinical students.

reportedly sought treatment. These findings are concerning

given that the development of depression and suicidality

has been linked to an increased short-term risk of suicide as

well as a higher long-term risk of future depressive episodes

cians, and the concordance between the summary preva-

lence estimates (27.2% in students vs 28.8% in residents)

suggests that depression is a problem affecting all levels of

medical training.^{13,213} Taken together, these data suggest that depressive and suicidal symptoms in medical trainees

may adversely affect the long-term health of physicians as

well as the quality of care delivered in academic medical

When interpreting these findings, it is important to

The present analysis builds on recent work demonstrating a high prevalence of depression among resident physi-

nent or region, level of training, baseline survey year, average age, proportion of male study participants, or total Newcastle-Ottawa score (P > .05 for all comparisons). Withininstrument heterogeneity was not examined because there were not enough studies using identical screening instruments (<4 for each assessment modality), precluding meaningful analysis.

Assessment of Publication Bias

Visual inspection of the funnel plot of studies reporting on depression or depressive symptoms revealed significant asymmetry (eFigure 2 in the Supplement). There was evidence of publication bias, with smaller studies yielding more extreme prevalence estimates (P = .001 using the Egger test). The funnel plot of studies reporting on suicidal ideation revealed minimal asymmetry (eFigure 3 in the Supplement), suggesting the absence of significant publication bias (P = .49 using the Egger test).

Discussion

This systematic review and meta-analysis of 195 studies involving 129 123 medical students in 47 countries demonstrated that 27.2% (range, 9.3%-55.9%) of students screened positive for depression and that 11.1% (range, 7.4%-24.2%) reported suicidal ideation during medical school. Only 15.7% of students who screened positive for depression

cation bias (P = .49 recognize that the data synthesized in this study were almost exclusively derived from self-report inventories of depressive symptoms that varied substantially in their

centers.²¹⁴⁻²¹⁶

and morbidity.^{211,212}

depressive symptoms that varied substantially in their sensitivity and specificity for diagnosing major depressive disorder (eTable 6 in the Supplement).²¹⁷ Instruments such as the PHQ-9 have high sensitivity and specificity for diagnosing major depression, whereas others such as the Primary Care Evaluation of Mental Disorders (PRIME-MD) have low specificity and should be viewed as screening tools. Although these self-report measures of depressive symptoms have limitations, they are essential tools for accurately measuring depression in medical trainees because they Figure 9. Meta-analyses of the Prevalence of Depression or Depressive Symptoms Among Medical Students Stratified by Newcastle-Ottawa Scale Components and Total Score

		Study Samp	le			
Newcastle-Ottawa Scale Components	No. of Studies	No. Depressed	Total No.	Prevalence, % (95% CI)		P Value fo Difference
Sample Representativeness						
Less representive ($l^2 = 97.8\%$, $\tau^2 = 0.77$, $P < .001$)	150	13567	53663	25.4 (22.8-28.2)	\diamond	000
More representive (<i>I</i> ² = 99.7%, τ ² = 0.73, <i>P</i> < .001)	33	24366	68 693	36.3 (29.9-43.3)	\diamond	.002
Sample Size						
<200 Participants (<i>I</i> ² =93.6%, τ ² =0.62, <i>P</i> <.001)	57	2274	7632	27.2 (23.2-31.6)	\diamond	0.5
≥200 Participants (<i>I</i> ² =99.2%, τ ² =0.79, <i>P</i> < .001)	126	35659	114724	27.3 (24.3-30.6)	\diamond	.95
Respondent-Nonrespondent Comparability						
Less comparable ($I^2 = 99.0\%$, $\tau^2 = 0.81$, $P < .001$)	165	34774	113260	27.6 (24.9-30.5)	\diamond	20
More comparable ($I^2 = 97.6\%$, $\tau^2 = 0.52$, $P < .001$)	18	3159	9096	23.8 (18.1-30.6)	\diamond	.29
Ascertainment of Depression						
Less valid (<i>I</i> ² = 99.0%, τ ² = 0.78, <i>P</i> < .001)	102	22566	71291	28.6 (25.2-32.3)	\diamond	
More valid (<i>I</i> ² =98.8%, τ ² =0.81, <i>P</i> <.001)	81	15367	51065	25.5 (21.9-29.5)	\diamond	.24
Descriptive Statistics Reporting						
Less thorough ($l^2 = 99.0\%$, $\tau^2 = 0.94$, $P < .001$)	97	18595	60 300	25.8 (22.2-29.7)	\diamond	25
More thorough ($I^2 = 98.8\%$, $\tau^2 = 0.66$, $P < .001$)	86	19338	62056	28.8 (25.4-32.6)	\diamond	.25
Total Newcastle-Ottawa Score						
<3 points (<i>I</i> ² = 98.7%, τ ² = 0.91, <i>P</i> < .001)	138	21518	69789	27.0 (23.9-30.3)	\diamond	
\geq 3 points ($I^2 = 99.3\%$, $\tau^2 = 0.64$, $P < .001$)	45	16415	52 567	27.9 (23.4-32.9)	\diamond	.75

Full details regarding Newcastle-Ottawa risk of bias scoring are provided in eMethods 2 in the Supplement. Component scores for all individual studies are presented in eTable 2 in the Supplement. The area of each diamond is

proportional to the inverse variance of the estimate. Horizontal extremes of the diamonds indicate 95% CIs of the estimate.

protect anonymity in a manner that is not possible through formal diagnostic interviews.²¹⁸ To control for the differences in these inventories, we stratified our analyses by survey instrument and cutoff score, identifying a range of estimates not captured in another evidence synthesis.²¹⁹

The prevalence of depressive symptoms among medical students in this study was higher than that reported in the general population.²²⁰⁻²²² For example, the National Institute of Mental Health study of behavioral health trends in the United States, including 67 500 nationally representative participants, found that the 12-month prevalence of a major depressive episode was 9.3% among 18- to 25-year-olds and 7.2% among 26- to 49-year-olds.²²⁰ In contrast, the BDI, CES-D, and PHQ-9 summary estimates obtained in the present study were between 2.2 and 5.2 times higher than these estimates. These findings suggest that depressive symptom prevalence is substantially higher among medical students than among individuals of similar age in the general population.

How depression levels in medical students compare with those in nonmedical undergraduate students and professional students is unclear. One review concluded that depressive symptom prevalence did not statistically differ between medical students and nonmedical undergraduate students.²²³ However, this conclusion may be confounded because the analysis did not control for assessment modality and did not include a comprehensive or representative set of studies (only 12 studies and 4 studies exclusively composed of medical students and nonmedical students, respectively). Two large, representative epidemiological studies have estimated that depressive symptom prevalence in nonmedical students ranges from 13.8% to 21.0%, lower than the estimates reported by many studies of medical students in the present meta-analysis.^{224,225}

Some professional students, such as law students, may not markedly differ from medical students in their susceptibility to depression, although firm conclusions cannot be drawn from the currently available data.^{226,227} Together, these findings suggest that factors responsible for depression in medical students may also be operative in other undergraduate and professional schools. The finding in the longitudinal analysis of an increase in depressive symptom prevalence with the onset of medical school suggests that it is not just that medical students (and other students) are prone to depression, but that the school experience may be a causal factor.

This analysis identified a pooled prevalence of suicidal ideation of 11.1%. Endorsement of suicidal ideation as assessed by the PHQ-9 or other similar instruments increases the cumulative risk of a suicide attempt or completion over the next year by 10- and 100-fold, respectively.²²⁸ Combined with the finding that only 15.7% of medical students who screened positive for depression sought treatment, the high prevalence of suicidal ideation underscores the need for effective preven-

Table 3. Secondary Anal	ysis of 9 Longitu	dinal Studie	s Reportin	g Depressio	n or Depres	sive Symptom Prevaler	ice Estimates E	oth Before	Table 3. Secondary Analysis of 9 Longitudinal Studies Reporting Depression or Depressive Symptom Prevalence Estimates Both Before and During Medical School	loc	
				Baseline			Follow-up			Comparison	
Source ^a	Screening Instrument	Cutoff Score	Follow- up, mo	No. Depressed	Sample Size	Prevalence, % (95% CI)	No. Sam Depressed Size	Sample Size	Prevalence, % (95% Cl)	Absolute Increase, % (95% CI)	Relative Increase, Ratio (95% CI)
Walkiewicz et al, ²⁰⁹ 2012	D-I4MM	>70	12	31	178	17.4 (11.8 to 23.0)	32	178	18.0 (12.4 to 23.6)	0.6 (-7.4 to 8.5)	1.0 (0.6 to 1.8)
Quince et al, ²⁰⁶ 2012	HADS-D	≥8	12	38	665	5.7 (3.9 to 7.5)	36	429	8.4 (5.8 to 11.0)	2.7 (-0.4 to 6.1)	1.5 (0.9 to 2.4)
Levine et al, ²⁰² 2006	21-Item BDI	≥8	20	64	376	17.0 (13.2 to 20.8)	80	330	24.2 (19.6 to 28.8)	7.2 (1.3 to 13.2)	1.4 (1.0 to 2.0)
Camp et al, ¹⁹⁸ 1994	Zung-SDS	≥50	ę	14	232	6.0 (2.9 to 9.1)	42	232	18.1 (13.2 to 23.1)	12.1 (6.2 to 18.0)	3.0 (1.6 to 5.6)
Vitaliano et al, ²⁰⁸ 1988	BDI	≥5	∞	36	312	11.5 (8.0 to 15.0)	78	312	25.0 (20.2 to 29.8)	13.5 (7.4 to 19.4)	2.2 (1.4 to 3.3)
Clark and Zeldow, ¹⁹⁹ 1988	21-item BDI	8	14	11	116	9.5 (4.2 to 14.8)	24	88	27.3 (18.0 to 36.6)	17.8 (7.2 to 28.7)	2.9 (1.3 to 6.2)
Rosal et al, ²⁰⁷ 1997	CES-D	≥80th ^b	18	48	264	18.2 (13.6 to 22.9)	67	171	39.2 (31.9 to 46.5)	21.0 (12.3 to 29.6)	2.2 (1.4 to 3.3)
Aktekin et al, ¹⁹⁶ 2001	GHQ	≥4	12	21	119	17.6 (10.8 to 24.4)	57	119	47.9 (38.9 to 56.9)	30.3 (18.5 to 40.9)	2.7 (1.5 to 4.8)
Yusoff et al, ²¹⁰ 2013	DASS-21	≥10	12	10	170	5.9 (2.4 to 9.4)	70	170	41.2 (33.8 to 48.6)	35.3 (26.8 to 43.3)	7.0 (3.5 to 14.0)
Abbreviations: BDI, Beck Depression Inventory: CES-D, Center for Epidemiological Studies Depression Scale: DASS-21, 21-item Depression Anxiety Stress Scale: GHQ, General Health Questionnaire: HADS-D, Hospital Anxiety and Depression Scale: MMPI-D, Minnesota Multiphasic Personality Inventory-Depression Scale: Zung-SDS, Zung Self-Rating Depression Scale.	Depression Invention on Anxiety Stress PI-D, Minnesota N Ile.	ory; CES-D, C Scale; GHQ, C Aultiphasic Pe	enter for Ep General Hea ersonality In	idemiological Ith Questionn ventory-Depr	l Studies Depl laire; HADS-E ession Scale;	_	^a Studies are sorted by the The median percentage in ^b Indicates 80 th percentile.	ed by the pe centage incr ercentile.	Studies are sorted by the percentage increase in depressive syr The median percentage increase among the studies was 13.5%. Indicates 80 th percentile.	^a Studies are sorted by the percentage increase in depressive symptoms from baseline to the follow-up survey. The median percentage increase among the studies was 13.5%. ^b Indicates 80 th percentile.	to the follow-upsurvey.

Research Original Investigation

tive efforts and increased access to care that accommodate the needs of medical students and the demands of their training.

Prevalence of Depression and Suicidal Ideation Among Medical Students

Limitations

This study has important limitations. First, the data were derived from studies that had different designs, screening instruments, and trainee demographics. The substantial heterogeneity among the studies remained largely unexplained by the variables inspected. Second, many subgroup analyses relied on unpaired cross-sectional data collected at different medical schools, which may cause confounding. Third, because the studies were heterogeneous with respect to screening inventories and student populations, the prevalence of major depression could not be determined. Fourth, the analysis relied on aggregated published data. A multicenter, prospective study using a single validated measure of depression and suicidal ideation with structured diagnostic interviews in a random subset of participants would provide a more accurate estimate of the prevalence of depression and suicidal ideation among medical students.

Future Directions

Because of the high prevalence of depressive and suicidal symptomatology in medical students, there is a need for additional studies to identify the root causes of emotional distress in this population. To provide more relevant information, future epidemiological studies should consider adopting prospective study designs so that the same individuals can be assessed over time, use commonly used screening instruments with valid cutoffs for assessing depression in the community (eg, the BDI, CES-D, or PHQ-9), screen for comorbid anxiety disorders, and completely and accurately report their data, for example, by closely following the Strengthening the Reporting of Observational Studies in Epidemiology guidelines.²²⁹

Possible causes of depressive and suicidal symptomatology in medical students likely include stress and anxiety secondary to the competitiveness of medical school.⁶² Restructuring medical school curricula and student evaluations (such as using a pass-fail grading schema rather than a tiered grading schema and fostering collaborative group learning through a "flipped-classroom" education model) might ameliorate these stresses.^{230,231} Future research should also determine how strongly depression in medical school predicts depression during residency and whether interventions that reduce depression in medical students carry over in their effectiveness when those students transition to residency.²³² Furthermore, efforts are continually needed to reduce barriers to mental health services, including addressing the stigma of depression.146,233

Conclusions

In this systematic review, the summary estimate of the prevalence of depression or depressive symptoms among medical students was 27.2% and that of suicidal ideation was 11.1%. Further research is needed to identify strategies for preventing and treating these disorders in this population.

Figure 10. Meta-analysis of the Prevalence of Suicidal Ideation Among Medical Students

Source	No. Suicidal	Total No.	Prevalence, % (95% CI)		Weight
Score >0 on Beck Scale for Suicidal Ideation		-	(,		
Alexandrino-Silva et al, ³⁴ 2009	45	336	13.4 (9.9-17.5)		4.2
icore >24 on Beck Scale for Suicidal Ideation					
Ahmed et al, ¹⁸⁵ 2016	78	612	12.7 (10.2-15.6)		4.4
Aini International Neuropsychiatric Interview					
de Melo Cavestro and Rocha, ⁶⁵ 2006	16	213	7.5 (4.4-11.9)		3.8
core ≥7 on Revised Suicidial Behaviors Questionnaire					
Tan et al, ¹⁶⁷ 2015	36	517	7.0 (4.9-9.5)		4.2
uicidal Ideation Over Past Month					
Alem et al, ¹⁸⁶ 2005	16	273	5.9 (3.4-9.3)		3.8
uicidal Ideation Over Past 12 mo					
Amiri et al, ¹⁸⁷ 2013	8	115	7.0 (3.1-13.2)	- B +	3.2
Wallin and Runeson, ¹⁹⁵ 2003	40	305	13.1 (9.5-17.4)		4.2
Okasha et al, ¹⁹² 1981	66	516	12.8 (10.0-16.0)		4.3
Eskin et al, ¹⁸⁹ 2011	75	646	11.6 (9.2-14.3)		4.4
Chen et al, ¹⁸⁸ 2004	156	892	17.5 (15.1-20.1)		4.5
Tran et al, ¹⁹³ 2015	179	2099	8.5 (7.4-9.8)		4.5
Wan et al, ⁴ 2012	199	4063	4.9 (4.3-5.6)		4.5
Summary Prevalence <i>I</i> ² = 96.6%, τ ² = 0.33, <i>P</i> < .001	723	8636	10.2 (6.8-15.0)	•	29.6
uicidal Ideation Over Past 12 mo (28-Item General Health Que	stionnaire)				
Menezes et al, ¹⁹¹ 2012	22	206	10.7 (6.8-15.7)	-	3.9
Khokher and Khan, ¹⁹⁰ 2005	68	217	31.3 (25.2-38.0)		4.3
Osama et al, ⁵ 2014	118	331	35.6 (30.5-41.1)		4.4
Summary Prevalence $l^2 = 94.6\%$, $\tau^2 = 0.42$, $P < .001$	208	754	24.2 (13.0-40.5)		12.6
uicidal Ideation Over Past 12 mo (Meehan Inventory)					
Dahlin et al, ⁶² 2005	16	296	5.4 (3.1-8.6)		3.8
MacLean et al, ¹¹² 2016	45	385	11.7 (8.7-15.3)	÷	4.2
Dyrbye et al, ⁷³ 2008	249	2230	11.2 (9.9-12.5)	Þ	4.5
Dyrbye et al, ⁷⁴ 2014	375	4032	9.3 (8.4-10.2)		4.5
Summary Prevalence $I^2 = 77.7\%$, $\tau^2 = 0.03$, $P = .004$	685	6943	9.7 (8.0-11.7)		17.1
uicidal Ideation Over Past 12 mo (Paykel Inventory)					
Tyssen et al, ¹⁹⁴ 2001	74	522	14.2 (11.3-17.5)		4.4
uicidal Ideation Over Past 2 wk (9-Item Patient Health Questic	onnaire)				
Sobowale et al, ¹⁶⁰ 2014	26	348	7.5 (4.9-10.8)		4.0
Wege et al, ¹⁷⁴ 2016	43	590	7.3 (5.3-9.7)		4.2
Summary Prevalence $l^2 = 0\%$, $\tau^2 = 0$, $P = .92$	69	938	7.4 (5.9-9.2)	♦	8.3
uicidal Ideation Over Past 2 wk (Primary Care Evaluation of Me	ental Disorders)				
Thompson et al, ¹⁶⁵ 2010	13	43	30.2 (17.2-46.1)		3.4
Goebert et al, ⁷⁹ 2009	80	1215	6.6 (5.3-8.1)		4.4
Summary Prevalence $l^2 = 96.3\%$, $\tau^2 = 1.59$, $P < .001$	93	1258	14.5 (2.8-50.2)		7.8
ooled Summary Estimate <i>I</i> ² = 95.8%, τ ² = 0.32, <i>P</i> < .001	2043	21.002	11.1 (9.0-13.7)	\	100.0

Contributing studies are stratified by screening modality and sorted by increasing sample size. The dotted line marks the overall summary estimate for all studies, 11.1% (2043/21002 individuals; 95% CI, 9.0%-13.7%; Q = 547.1,

 τ^2 = 0.32, l^2 = 95.8%, P < .001). The area of each square is proportional to the inverse variance of the estimate. Horizontal lines indicate 95% CIs of the estimate.

ARTICLE INFORMATION

Author Affiliations: Harvard Medical School, Boston, Massachusetts (Rotenstein, Torre, Segal, Peluso, Mata); Harvard Business School, Boston, Massachusetts (Rotenstein); Yale School of Medicine, Yale University, New Haven, Connecticut (Ramos); Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Torre); Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (Peluso); Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston (Guille); Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor (Sen); Department of Psychiatry, University of Michigan, Ann Arbor (Sen); Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Mata); Brigham Education Institute, Boston, Massachusetts (Mata).

Author Contributions: Dr Mata had full access to all of the data in the study and takes responsibility

Research Original Investigation

for the integrity of the data and the accuracy of the analysis. Ms Rotenstein, Messrs Ramos and Segal, and Dr Torre are equal contributors. *Concept and design:* Mata.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Mata.

Critical revision of the manuscript for important intellectual content: All authors.

Statistical analysis: Mata.

Obtained funding: Guille, Sen, Mata.

Administrative, technical, or material support: Guille, Sen, Mata.

Study supervision: Guille, Sen, Mata.

Conflict of Interest Disclosures: The authors have completed and submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest and none were reported.

Funding/Support: Funding was provided by the National Institutes of Health (MSTP TG 2T32GM07205 awarded to Mr Ramos and grant R01MH101459 awarded to Dr Sen) and the US Department of State (Fulbright Scholarship awarded to Dr Mata).

Role of the Funder/Sponsor: The National Institutes of Health and the US Department of State had no role in the design and conduct of the study; the collection, management, analysis, or interpretation of the data; the preparation, review, or approval of the manuscript; or the decision to submit the manuscript for publication.

Disclaimer: The opinions, results, and conclusions reported in this article are those of the authors and are independent from the National Institutes of Health and the US Department of State.

REFERENCES

1. Dyrbye LN, Thomas MR, Shanafelt TD. Systematic review of depression, anxiety, and other indicators of psychological distress among US and Canadian medical students. *Acad Med*. 2006;81(4): 354-373.

2. Prinz P, Hertrich K, Hirschfelder U, de Zwaan M. Burnout, depression and depersonalisation psychological factors and coping strategies in dental and medical students. *GMS Z Med Ausbild*. 2012;29(1):Doc10.

3. Supe AN. A study of stress in medical students at Seth G S Medical College. *J Postgrad Med*. 1998;44 (1):1-6.

4. Wan YH, Gao R, Tao XY, Tao FB, Hu CL. Relationship between deliberate self-harm and suicidal behaviors in college students [in Chinese]. *Zhonghua Liu Xing Bing Xue Za Zhi*. 2012;33(5):474-477.

5. Osama M, Islam MY, Hussain SA, et al. Suicidal ideation among medical students of Pakistan: a cross-sectional study. *J Forensic Leg Med*. 2014;27: 65-68.

6. Yang F, Meng H, Chen H, et al. Influencing factors of mental health of medical students in China. *J Huazhong Univ Sci Technolog Med Sci.* 2014;34(3):443-449.

7. Guerrero López JB, Heinze Martin G, Ortiz de León S, Cortés Morelos J, Barragán Pérez V, Flores-Ramos M. Factors that predict depression in medical students [in Spanish]. *Gac Med Mex*. 2013; 149(6):598-604. 8. Al-Faris EA, Irfan F, Van der Vleuten CP, et al. The prevalence and correlates of depressive symptoms from an Arabian setting: a wake up call. *Med Teach*. 2012;34(suppl 1):S32-S36.

9. Bayati A, Beigi M, Salehi M. Depression prevalence and related factors in Iranian students. *Pak J Biol Sci.* 2009;12(20):1371-1375.

10. Haglund ME, aan het Rot M, Cooper NS, et al. Resilience in the third year of medical school: a prospective study of the associations between stressful events occurring during clinical rotations and student well-being. *Acad Med*. 2009;84(2): 258-268.

11. Khan MS, Mahmood S, Badshah A, Ali SU, Jamal Y. Prevalence of depression, anxiety and their associated factors among medical students in Karachi, Pakistan. *J Pak Med Assoc*. 2006;56(12): 583-586.

12. Shanafelt TD, Sloan JA, Habermann TM. The well-being of physicians. *Am J Med*. 2003;114 (6):513-519.

13. Mata DA, Ramos MA, Bansal N, et al. Prevalence of depression and depressive symptoms among resident physicians: a systematic review and meta-analysis. *JAMA*. 2015;314(22):2373-2383.

14. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. *Open Med*. 2009;3(3):e123-e130.

15. Stroup DF, Berlin JA, Morton SC, et al; Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group. Meta-analysis of observational studies in epidemiology: a proposal for reporting. *JAMA*. 2000;283(15):2008-2012.

16. Kerr LK, Kerr LD Jr. Screening tools for depression in primary care: the effects of culture, gender, and somatic symptoms on the detection of depression. *West J Med.* 2001;175(5):349-352.

17. Stang A. Critical evaluation of the Newcastle-Ottawa Scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol.* 2010;25(9):603-605.

18. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. *Res Synth Methods*. 2010;1(2):97-111.

19. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med*. 2002; 21(11):1539-1558.

20. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327(7414):557-560.

21. Sterne JAC, Jüni P, Schulz KF, Altman DG, Bartlett C, Egger M. Statistical methods for assessing the influence of study characteristics on treatment effects in "meta-epidemiological" research. *Stat Med.* 2002;21(11):1513-1524.

22. van Houwelingen HC, Arends LR, Stijnen T. Advanced methods in meta-analysis: multivariate approach and meta-regression. *Stat Med*. 2002;21 (4):589-624.

23. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315(7109):629-634.

24. Sterne JAC, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. *J Clin Epidemiol*. 2001;54(10):1046-1055.

25. R Core Team. *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing; 2015.

26. Kumar GS, Jain A, Hegde S. Prevalence of depression and its associated factors using Beck Depression Inventory among students of a medical college in Karnataka. *Indian J Psychiatry*. 2012;54 (3):223-226.

27. Abdel Wahed WY, Hassan SK. Prevalence and associated factors of stress, anxiety and depression among medical Fayoum University students [published online February 20, 2016]. *Alex J Med.* doi:10.1016/j.ajme.2016.01.005

28. Adamiak G, Swiatnicka E, Wołodźko-Makarska L, Switalska MJ. Assessment of quality of life of medical students relative to the number and intensity of depressive symptoms [in Polish]. *Psychiatr Pol.* 2004;38(4):631-638.

29. Aghakhani N, Sharif Nia H, Eghtedar S, Rahbar N, Jasemi M, Mesgar Zadeh M. Prevalence of depression among students of Urmia University of Medical Sciences (Iran). *Iran J Psychiatry Behav Sci.* 2011;5(2):131-135.

30. Ahmed I, Banu H, Al-Fageer R, Al-Suwaidi R. Cognitive emotions: depression and anxiety in medical students and staff. *J Crit Care*. 2009;24(3): e1-e7.

31. Akbari V, Hajian A, Damirchi P. Prevalence of emotional disorders among students of University of Medical Sciences; Iran. *Open Psychol J.* 2014;7: 29-32.

32. Akvardar Y, Demiral Y, Ergör G, Ergör A, Bilici M, Akil Ozer O. Substance use in a sample of Turkish medical students. *Drug Alcohol Depend*. 2003;72 (2):117-121.

33. Akvardar Y, Demiral Y, Ergor G, Ergor A. Substance use among medical students and physicians in a medical school in Turkey. *Soc Psychiatry Psychiatr Epidemiol.* 2004;39(6):502-506.

34. Alexandrino-Silva C, Pereira MLG, Bustamante C, et al. Suicidal ideation among students enrolled in healthcare training programs: a cross-sectional study. *Rev Bras Psiquiatr.* 2009;31(4):338-344.

35. AlFaris EA, Naeem N, Irfan F, Qureshi R, van der Vleuten C. Student centered curricular elements are associated with a healthier educational environment and lower depressive symptoms in medical students. *BMC Med Educ.* 2014;14:192.

36. Ali FA, Javed N, Manzur F. Anxiety and depression among medical students during exams. *Pak J Med Health Sci.* 2015;9(1):119-122.

37. Ali RV, Vankar GK. Psychoactive substance use among medical students. *Indian J Psychiatry*. 1994; 36(3):138-140.

38. Alvi T, Assad F, Ramzan M, Khan FA. Depression, anxiety and their associated factors among medical students. *J Coll Physicians Surg Pak.* 2010;20(2):122-126.

39. Amaral GF do, Gomide LM de P, Batista M de P, et al. Depressive symptoms in medical students of Universidade Federal de Goiás: a prevalence study [in Portuguese]. *Rev Psiquiatr RS*. 2008;30(2):124-130.

40. Amir M, El Gillany AH. Self-reported depression and anxiety by students at an Egyptian medical school. *J Pak Psychiatr Soc.* 2010;7(2):71.

41. Angkurawaranon C, Jiraporncharoen W, Sachdev A, Wisetborisut A, Jangiam W,

Uaphanthasath R. Predictors of quality of life of medical students and a comparison with quality of life of adult health care workers in Thailand. *Springerplus*. 2016;5:584.

42. Aniebue PN, Onyema GO. Prevalence of depressive symptoms among Nigerian medical undergraduates. *Trop Doct.* 2008;38(3):157-158.

43. Ashor AW. Smoking dependence and common psychiatric disorders in medical students: cross-sectional study. *Pak J Med Sci.* 2012;28(4): 670-674.

44. Ashton CH, Kamali F. Personality, lifestyles, alcohol and drug consumption in a sample of British medical students. *Med Educ*. 1995;29(3):187-192.

45. Aziz NAHA, Al-Muwallad OK, Mansour EAK. Neurotic depression and chocolate among female medical students at College of Medicine, Taibah University Almadinah Almunawwarah, Kingdom of Saudi Arabia. *J Taibah Univ Med Sci*. 2011;6(2):139-147.

46. Yusoff MSB, Rahim AFA, Yaacob MJ. The prevalence of final year medical students with depressive symptoms and its contributing factors. *Int Med J.* 2011;18(4):305-309.

47. Baldassin S, Alves TC, de Andrade AG, Nogueira Martins LA. The characteristics of depressive symptoms in medical students during medical education and training: a cross-sectional study. *BMC Med Educ*. 2008;8:60.

48. Basnet B, Jaiswal M, Adhikari B, Shyangwa PM. Depression among undergraduate medical students. *Kathmandu Univ Med J (KUMJ)*. 2012;10 (39):56-59.

49. Bassols AM, Okabayashi LS, Silva AB, et al. First- and last-year medical students: is there a difference in the prevalence and intensity of anxiety and depressive symptoms? *Rev Bras Psiquiatr*. 2014;36(3):233-240.

50. Baykan Z, Naçar M, Cetinkaya F. Depression, anxiety, and stress among last-year students at Erciyes University Medical School. *Acad Psychiatry*. 2012;36(1):64-65.

51. Berner JE, Santander J, Contreras AM, Gómez T. Description of internet addiction among Chilean medical students: a cross-sectional study. *Acad Psychiatry*. 2014;38(1):11-14.

52. Bore M, Kelly B, Nair B. Potential predictors of psychological distress and well-being in medical students: a cross-sectional pilot study. *Adv Med Educ Pract*. 2016;7:125-135.

53. Bunevicius A, Katkute A, Bunevicius R. Symptoms of anxiety and depression in medical students and in humanities students: relationship with big-five personality dimensions and vulnerability to stress. *Int J Soc Psychiatry*. 2008;54 (6):494-501.

54. Carter FA, Bell CJ, Ali AN, McKenzie J, Wilkinson TJ. The impact of major earthquakes on the psychological functioning of medical students: a Christchurch, New Zealand study. *N Z Med J*. 2014;127(1398):54-66.

55. Castaldelli-Maia JM, Martins SS, Bhugra D, et al. Does ragging play a role in medical student depression: cause or effect? *J Affect Disord*. 2012; 139(3):291-297.

56. Chan DW. Depressive symptoms and depressed mood among Chinese medical students in Hong Kong. *Compr Psychiatry*. 1991;32(2):170-180.

57. Chan DW. Coping with depressed mood among Chinese medical students in Hong Kong. *J Affect Disord*. 1992;24(2):109-116.

58. Chandavarkar U, Azzam A, Mathews CA. Anxiety symptoms and perceived performance in medical students. *Depress Anxiety*. 2007;24(2): 103-111.

59. Chang E, Eddins-Folensbee F, Coverdale J. Survey of the prevalence of burnout, stress, depression, and the use of supports by medical students at one school. *Acad Psychiatry*. 2012;36 (3):177-182.

60. Choi J, Son SL, Kim SH, Kim H, Hong J-Y, Lee M-S. The prevalence of burnout and the related factors among some medical students in Korea [in Korean]. *Korean J Med Educ*. 2015;27(4):301-308.

61. Costa EF, Santana YS, Santos ATR, Martins LA, Melo EV, Andrade TM. Depressive symptoms among medical intern students in a Brazilian public university [in Portuguese]. *Rev Assoc Med Bras* (1992). 2012;58(1):53-59.

62. Dahlin M, Joneborg N, Runeson B. Stress and depression among medical students: a cross-sectional study. *Med Educ*. 2005;39(6):594-604.

63. Dahlin M, Nilsson C, Stotzer E, Runeson B. Mental distress, alcohol use and help-seeking among medical and business students: a cross-sectional comparative study. *BMC Med Educ*. 2011;11:92.

64. David MA, Hamid Hashmi SS. Study to evaluate prevalence of depression, sleep wake pattern and their relation with use of social networking sites among first year medical students. *Int J Pharma Med Biol Sci.* 2013;2(1):27-31.

65. de Melo Cavestro J, Rocha FL. Depression prevalence among university students [in Spanish]. *J Bras Psiquiatr.* 2006;55(4):264-267.

66. Leão PB, Martins LA, Menezes PR, Bellodi PL. Well-being and help-seeking: an exploratory study among final-year medical students. *Rev Assoc Med Bras* (1992). 2011;57(4):379-386.

67. De Sousa Lima L, Ferry V, Martins Fonseca RN, et al. Depressive symptoms among medical students of the State University of Maranhão. *Revista Neurociências*. 2010;18(1):8-12.

68. Dyrbye LN, Eacker A, Durning SJ, et al. The impact of stigma and personal experiences on the help-seeking behaviors of medical students with burnout. *Acad Med.* 2015;90(7):961-969.

69. Dyrbye LN, Massie FS Jr, Eacker A, et al. Relationship between burnout and professional conduct and attitudes among US medical students. *JAMA*. 2010;304(11):1173-1180.

70. Dyrbye LN, Moutier C, Durning SJ, et al. The problems program directors inherit: medical student distress at the time of graduation. *Med Teach*. 2011;33(9):756-758.

71. Dyrbye LN, Thomas MR, Eacker A, et al. Race, ethnicity, and medical student well-being in the United States. *Arch Intern Med*. 2007;167(19):2103-2109.

72. Dyrbye LN, Thomas MR, Huntington JL, et al. Personal life events and medical student burnout: a multicenter study. *Acad Med*. 2006;81(4):374-384.

73. Dyrbye LN, Thomas MR, Massie FS, et al. Burnout and suicidal ideation among US medical students. *Ann Intern Med*. 2008;149(5):334-341. **74**. Dyrbye LN, West CP, Satele D, et al. Burnout among US medical students, residents, and early career physicians relative to the general US population. *Acad Med*. 2014;89(3):443-451.

75. El-Gilany AH, Amr M, Hammad S. Perceived stress among male medical students in Egypt and Saudi Arabia: effect of sociodemographic factors. *Ann Saudi Med.* 2008;28(6):442-448.

76. Farahangiz S, Mohebpour F, Salehi A. Assessment of mental health among Iranian medical students: a cross-sectional study. *Int J Health Sci (Qassim)*. 2016;10(1):49-55.

77. Ghodasara SL, Davidson MA, Reich MS, Savoie CV, Rodgers SM. Assessing student mental health at the Vanderbilt University School of Medicine. *Acad Med.* 2011;86(1):116-121.

78. Givens JL, Tjia J. Depressed medical students' use of mental health services and barriers to use. *Acad Med.* 2002;77(9):918-921.

79. Goebert D, Thompson D, Takeshita J, et al. Depressive symptoms in medical students and residents: a multischool study. *Acad Med*. 2009;84 (2):236-241.

80. Gold JA, Johnson B, Leydon G, Rohrbaugh RM, Wilkins KM. Mental health self-care in medical students: a comprehensive look at help-seeking. *Acad Psychiatry*. 2015;39(1):37-46.

81. Güleç M, Bakir B, Ozer M, Uçar M, Kiliç S, Hasde M. Association between cigarette smoking and depressive symptoms among military medical students in Turkey. *Psychiatry Res.* 2005;134(3): 281-286.

 Gupta S, Basak P. Depression and type D personality among undergraduate medical students. *Indian J Psychiatry*. 2013;55(3):287-289.

83. Hardeman RR, Przedworski JM, Burke SE, et al. Mental well-being in first year medical students: a comparison by race and gender: a report from the medical student CHANGE study. *J Racial Ethn Health Disparities*. 2015;2(3):403-413.

84. Helmers KF, Danoff D, Steinert Y, Leyton M, Young SN. Stress and depressed mood in medical students, law students, and graduate students at McGill University. *Acad Med*. 1997;72(8):708-714.

85. Hendryx MS, Haviland MG, Shaw DG. Dimensions of alexithymia and their relationships to anxiety and depression. *J Pers Assess*. 1991;56(2): 227-237.

86. Herzog DB, Borus JF, Hamburg P, Ott IL, Concus A. Substance use, eating behaviors, and social impairment of medical students. *J Med Educ*. 1987;62(8):651-657.

87. Hirata FC, Lima MCO, de Bruin VMS, Nóbrega PR, Wenceslau GP, de Bruin PFC. Depression in medical school: the influence of morningness-eveningness. *Chronobiol Int*. 2007;24(5):939-946.

 Honney K, Buszewicz M, Coppola W, Griffin M. Comparison of levels of depression in medical and non-medical students. *Clin Teach*. 2010;7(3):180-184.

89. Ibrahim MB, Abdelreheem MH. Prevalence of anxiety and depression among medical and pharmaceutical students in Alexandria University. *Alex J Med.* 2015;51(2):167-173.

90. Ibrahim N, Al-Kharboush D, El-Khatib L, Al-Habib A, Asali D. Prevalence and predictors of anxiety and depression among female medical

students in King Abdulaziz University, Jeddah, Saudi Arabia. *Iran J Public Health*. 2013;42(7):726-736.

91. Ibrahim NKR, Battarjee WF, Almehmadi SA. Prevalence and predictors of irritable bowel syndrome among medical students and interns in King Abdulaziz University, Jeddah. *Libyan J Med*. 2013;8:21287.

92. Imran N, Tariq KF, Pervez MI, Jawaid M, Haider II. Medical students' stress, psychological morbidity, and coping strategies: a cross-sectional study from Pakistan. *Acad Psychiatry*. 2016;40 (1):92-96.

93. Inam SNB, Saqib A, Alam E. Prevalence of anxiety and depression among medical students of private university. *J Pak Med Assoc*. 2003;53(2):44-47.

94. Inam SB. Anxiety and depression among students of a medical college in Saudi Arabia. *Int J Health Sci (Qassim)*. 2007;1(2):295-300.

95. Iqbal S, Gupta S, Venkatarao E. Stress, anxiety & depression among medical undergraduate students & their socio-demographic correlates. *Indian J Med Res.* 2015;141(3):354-357.

96. Jackson ER, Shanafelt TD, Hasan O, Satele DV, Dyrbye LN. Burnout and alcohol abuse/dependence among US medical students. *Acad Med*. 2016;91(9): 1251-1256.

97. Jadoon NA, Yaqoob R, Raza A, Shehzad MA, Zeshan SC. Anxiety and depression among medical students: a cross-sectional study. *J Pak Med Assoc*. 2010;60(8):699-702.

98. James D, Yates J, Ferguson E. Can the 12-item General Health Questionnaire be used to identify medical students who might "struggle" on the medical course? a prospective study on two cohorts. *BMC Med Educ.* 2013;13:48.

99. Jeong Y, Kim JY, Ryu JS, Lee KE, Ha EH, Park H. The associations between social support, health-related behaviors, socioeconomic status and depression in medical students. *Epidemiol Health*. 2010;32:e2010009.

100. Jurkat HB, Richter L, Cramer M, et al. Depression and stress management in medical students: a comparative study between freshman and advanced medical students [in German]. *Nervenarzt*. 2011;82(5):646-652.

101. Karaoğlu N, Şeker M. Anxiety and depression levels of preclinic years' medical students and probable effective factors. *Turk Silahlı Kuvvetleri Koruyucu Hekim Bul*. 2011;10(3):303-312.

102. Kaya M, Genç M, Kaya B, Pehlivan E. Prevalence of depressive symptoms, ways of coping, and related factors among medical school and health services higher education students [in Turkish]. *Turk Psikiyatri Derg*. 2007;18(2):137-146.

103. Khan MA, Haider Z, Khokhar M. Anxiety and depression in 3rd year MBBS students of CMH Lahore Medical College, Lahore, Pakistan. *Rawal Med J.* 2015;40(1):21-23.

104. Kim B, Roh H. Depressive symptoms in medical students: prevalence and related factors. *Korean J Med Educ.* 2014;26(1):53-58.

105. Kohls N, Büssing A, Sauer S, et al. Psychological distress in medical students—a comparison of the universities of Munich and Witten/Herdecke [in German]. *Z Psychosom Med Psychother*. 2012;58(4):409-416. **106.** Kongsomboon K. Psychological problems and overweight in medical students compared to students from Faculty of Humanities, Srinakharinwirot University, Thailand. *J Med Assoc Thai.* 2010;93(suppl 2):S106-S113.

107. Kötter T, Tautphäus Y, Scherer M, Voltmer E. Health-promoting factors in medical students and students of science, technology, engineering, and mathematics: design and baseline results of a comparative longitudinal study. *BMC Med Educ*. 2014;14:134.

108. Kulsoom B, Afsar NA. Stress, anxiety, and depression among medical students in a multiethnic setting. *Neuropsychiatr Dis Treat*. 2015; 11:1713-1722.

109. Lapinski J, Yost M, Sexton P, LaBaere RJ II. Factors modifying burnout in osteopathic medical students. *Acad Psychiatry*. 2016;40(1):55-62.

110. Liao Y, Knoesen NP, Castle DJ, et al. Symptoms of disordered eating, body shape, and mood concerns in male and female Chinese medical students. *Compr Psychiatry*. 2010;51(5):516-523.

111. Lupo MK, Strous RD. Religiosity, anxiety and depression among Israeli medical students. *Isr Med Assoc J.* 2011;13(10):613-618.

112. MacLean L, Booza J, Balon R. The impact of medical school on student mental health. *Acad Psychiatry*. 2016;40(1):89-91.

113. Manaf NA, Saravanan C, Zuhrah B. The prevalence and inter-relationship of negative body image perception, depression and susceptibility to eating disorders among female medical undergraduate students. *J Clin Diagn Res.* 2016;10 (3):VC01-VC04.

114. Mancevska S, Bozinovska L, Tecce J, Pluncevik-Gligoroska J, Sivevska-Smilevska E. Depression, anxiety and substance use in medical students in the Republic of Macedonia. *Bratisl Lek Listy*. 2008;109(12):568-572.

115. Marakoğlu K, Çívi S, Şahsivar Ş, Özdemír S. The relationship between smoking status and depression prevalence among first and second year medical students. *Bağimlik Dergisi*. 2006;7(3):129-134.

116. Marwat MA. Prevalence of depression and the use of antidepressants among third year medical students of Khyber Medical College, Peshawar. *J Postgrad Med Inst.* 2013;27(1):26-28.

117. Matheson KM, Barrett T, Landine J, McLuckie A, Soh NL-W, Walter G. Experiences of psychological distress and sources of stress and support during medical training: a survey of medical students. *Acad Psychiatry*. 2016;40(1):63-68.

118. Mayda AS, Şen M, Tekeli AH, Sayan S, Sirakaya N. The frequency of depressive symptoms in students of the Medical School of Düzce University and its relationship with the dominant hand [in Turkish]. *Gazi Med J*. 2010;21(1).

119. Mehanna Z, Richa S. Prevalence of anxiety and depressive disorders in medical students: transversal study in medical students in the Saint-Joseph University of Beirut [in French]. *Encephale*. 2006;32(6 pt 1):976-982.

120. Melo-Carrillo A, Van Oudenhove L, Lopez-Avila A. Depressive symptoms among Mexican medical students: high prevalence and the effect of a group psychoeducation intervention. *J Affect Disord*. 2012;136(3):1098-1103. **121**. Miletic V, Lukovic JA, Ratkovic N, Aleksic D, Grgurevic A. Demographic risk factors for suicide and depression among Serbian medical school students. *Soc Psychiatry Psychiatr Epidemiol*. 2015; 50(4):633-638.

122. Mojs EH, Warchoł-Biedermann K, Głowacka MDD, Strzelecki W, Ziemska B, Samborski W. Are students prone to depression and suicidal thoughts? *Arch Med Sci.* 2015;11(3):605-611.

123. Mosley TH Jr, Perrin SG, Neral SM, Dubbert PM, Grothues CA, Pinto BM. Stress, coping, and well-being among third-year medical students. *Acad Med*. 1994;69(9):765-767.

124. Mousa OY, Dhamoon MS, Lander S, Dhamoon AS. The MD blues: under-recognized depression and anxiety in medical trainees. *PLoS One*. 2016;11(6):e0156554.

125. Naja WJ, Kansoun AH, Haddad RS. Prevalence of depression in medical students at the Lebanese University and exploring its correlation with Facebook relevance: a questionnaire study. *JMIR Res Protoc*. 2016;5(2):e96.

126. Nasioudis D, Palaiodimos L, Dagiasis M, Katsarou A, Ntouros E. Depression in military medicine cadets: a cross-sectional study. *Mil Med Res*. 2015;2(1):28.

127. Nava FR, Tafoya SA, Heinze G. A comparative study on depression and associated factors between medical 375 students of first and last academic years [in Spanish]. *Salud Ment*. 2013;36 (5):375-379.

128. Oku A, Oku O, Owoaje E, Monjok E. An assessment of mental health status of undergraduate medical trainees in the University of Calabar, Nigeria: a cross-sectional study. *Open Access Maced J Med Sci.* 2015;3(2):356-362.

129. Pan X-F, Wen Y, Zhao Y, et al. Prevalence of depressive symptoms and its correlates among medical students in China: a national survey in 33 universities. *Psychol Health Med*. 2016;21(7):882-889.

130. Paro HBMS, Morales NMO, Silva CHM, et al. Health-related quality of life of medical students. *Med Educ.* 2010;44(3):227-235.

131. Peleg-Sagy T, Shahar G. Depression and sexual satisfaction among female medical students: surprising findings from a pilot study. *Psychiatry*. 2012;75(2):167-175.

132. Pereyra-Elías R, Ocampo-Mascaró J, Silva-Salazar V, et al. Prevalence and associated factors with depressive symptoms in health sciences students from a private university in Lima, Peru [in Spanish]. *Rev Peru Med Exp Salud Publica*. 2010;27(4):520-526.

133. Perveen S, Kazmi SF, ur Rehman A. Relationship between negative cognitive style and depression among medical students. *J Ayub Med Coll Abbottabad*. 2016;28(1):94-98.

134. Phillips LC, Burgos Y, Olmos Y, et al. Evaluation of depressive features in medical students, his knowledge and management. *Revista del Hospital Psiquiátrico de la Habana*. 2006;3(2).

135. Pickard M, Bates L, Dorian M, Greig H, Saint D. Alcohol and drug use in second-year medical students at the University of Leeds. *Med Educ.* 2000;34(2):148-150.

136. Pillay N, Ramlall S, Burns JK. Spirituality, depression and quality of life in medical students in KwaZulu-Natal. *S Afr J Psychiatry*. 2016;22(1).

137. Pinzón-Amado A, Guerrero S, Moreno K, Landínez C, Pinzón J. Suicide ideation among medical students: pevalence and associated factors [in Spanish]. *Rev Colomb Psiquiatr*. 2013;43(suppl 1):47-55.

138. Rab F, Mamdou R, Nasir S. Rates of depression and anxiety among female medical students in Pakistan. *East Mediterr Health J*. 2008;14(1):126-133.

139. Ristić-Ignjatović D, Hinić D, Jakovljević M, Fountoulakis K, Siepera M, Rancić N. A ten-year study of depressive symptoms in Serbian medical students. *Acta Clin Croat*. 2013;52(2):157-163.

140. Rizvi F, Qureshi A, Rajput A, Afzal M. Prevalence of depression, anxiety and stress (by DASS scoring system) among medical students in Islamabad, Pakistan. *Br J Med Med Res.* 2015;8(1): 69-75.

141. Roh M-S, Jeon HJ, Kim H, Cho HJ, Han SK, Hahm B-J. Factors influencing treatment for depression among medical students: a nationwide sample in South Korea. *Med Educ*. 2009;43(2):133-139.

142. Romo-Nava F, Tafoya SA, Gutiérrez-Soriano J, et al. The association between chronotype and perceived academic stress to depression in medical students [published online August 31, 2016]. *Chronobiol Int*. doi:10.1080/07420528.2016.1217230

143. Saeed AA, Bahnassy AA, Al-Hamdan NA, Almudhaibery FS, Alyahya AZ. Perceived stress and associated factors among medical students. *J Family Community Med*. 2016;23(3):166-171.

144. Samaranayake CB, Fernando AT. Satisfaction with life and depression among medical students in Auckland, New Zealand. *N Z Med J*. 2011;124(1341): 12-17.

145. Saravanan C, Wilks R. Medical students' experience of and reaction to stress: the role of depression and anxiety. *Sci World J*. doi:10.1155 /2014/737382

146. Schwenk TL, Davis L, Wimsatt LA. Depression, stigma, and suicidal ideation in medical students. *JAMA*. 2010;304(11):1181-1190.

147. Serra RD, Dinato SLM, Caseiro MM. Prevalence of depressive and anxiety symptoms in medical students in the city of Santos. *J Bras Psiquiatr*. 2015; 64(3):213-220.

148. Seweryn M, Tyrała K, Kolarczyk-Haczyk A, Bonk M, Bulska W, Krysta K. Evaluation of the level of depression among medical students from Poland, Portugal and Germany. *Psychiatr Danub*. 2015;27(suppl 1):S216-S222.

149. Shah AA, Bazargan-Hejazi S, Lindstrom RW, Wolf KE. Prevalence of at-risk drinking among a national sample of medical students. *Subst Abus*. 2009;30(2):141-149.

150. Vahdat Shariatpanaahi M, Vahdat Shariatpanaahi Z, Moshtaaghi M, Shahbaazi SH, Abadi A. The relationship between depression and serum ferritin level. *Eur J Clin Nutr*. 2007;61(4):532-535.

151. Shen L, Kong H, Hou X. Prevalence of irritable bowel syndrome and its relationship with psychological stress status in Chinese university students. *J Gastroenterol Hepatol.* 2009;24(12): 1885-1890.

152. Sherina MS, Rampal L, Kaneson N. Psychological stress among undergraduate medical students. *Med J Malaysia*. 2004;59(2):207-211. **153.** Shi M, Liu L, Wang ZY, Wang L. Prevalence of depressive symptoms and its correlations with positive psychological variables among Chinese medical students: an exploratory cross-sectional study. *BMC Psychiatry*. 2016;16:3.

154. Shi M, Liu L, Yang Y-L, Wang L. The mediating role of self-esteem in the relationship between big five personality traits and depressive symptoms among Chinese undergraduate medical students. *Pers Individ Dif.* 2015;83:55-59.

155. Shindel AW, Eisenberg ML, Breyer BN, Sharlip ID, Smith JF. Sexual function and depressive symptoms among female North American medical students. *J Sex Med*. 2011;8(2):391-399.

156. Sidana S, Kishore J, Ghosh V, Gulati D, Jiloha R, Anand T. Prevalence of depression in students of a medical college in New Delhi: a cross-sectional study. *Australas Med J*. 2012;5(5):247-250.

157. Smith CK, Peterson DF, Degenhardt BF, Johnson JC. Depression, anxiety, and perceived hassles among entering medical students. *Psychol Health Med*. 2007;12(1):31-39.

158. Smith JF, Breyer BN, Eisenberg ML, Sharlip ID, Shindel AW. Sexual function and depressive symptoms among male North American medical students. *J Sex Med*. 2010;7(12):3909-3917.

159. Smith JF, Breyer BN, Shindel AW. Predictors of sexual bother in a population of male North American medical students. *J Sex Med*. 2011;8(12): 3363-3369.

160. Sobowale K, Zhou N, Fan J, Liu N, Sherer R. Depression and suicidal ideation in medical students in China: a call for wellness curricula. *Int J Med Educ*. 2014;5:31-36.

161. Sreeramareddy CT, Shankar PR, Binu VS, Mukhopadhyay C, Ray B, Menezes RG. Psychological morbidity, sources of stress and coping strategies among undergraduate medical students of Nepal. *BMC Med Educ*. 2007;7:26.

162. Sun L, Sun L-N, Sun Y-H, et al. Correlations between psychological symptoms and social relationships among medical undergraduates in Anhui Province of China. *Int J Psychiatry Med*. 2011; 42(1):29-47.

163. Tang Q-S. Mental survey in female students from a medical college of Guangxi during the epidemic period of severe acute respiratory syndrome. *Chin J Clin Rehabil*. 2005;9(32):90-91.

164. Thomas MR, Dyrbye LN, Huntington JL, et al. How do distress and well-being relate to medical student empathy? a multicenter study. *J Gen Intern Med*. 2007;22(2):177-183.

165. Thompson D, Goebert D, Takeshita J. A program for reducing depressive symptoms and suicidal ideation in medical students. *Acad Med*. 2010;85(10):1635-1639.

166. Thompson G, McBride RB, Hosford CC, Halaas G. Resilience among medical students: the role of coping style and social support. *Teach Learn Med*. 2016;28(2):174-182.

167. Tan ST, Sherina MS, Rampal L, Normala I. Prevalence and predictors of suicidality among medical students in a public university. *Med J Malaysia*. 2015;70(1):1-5.

168. Tjia J, Givens JL, Shea JA. Factors associated with undertreatment of medical student depression. *J Am Coll Health*. 2005;53(5):219-224.

169. Valle R, Sánchez E, Perales A. Depressive symptomatology and alcohol-related problems during the academic training of medical students [in Spanish]. *Rev Peru Med Exp Salud Publica*. 2013; 30(1):54-57.

170. Vankar JR, Prabhakaran A, Sharma H. Depression and stigma in medical students at a private medical college. *Indian J Psychol Med*. 2014; 36(3):246-254.

171. Vaysse B, Gignon M, Zerkly S, Ganry O. Alcohol, tobacco, cannabis, anxiety and depression among second-year medical students: identify in order to act [in French]. *Sante Publique*. 2014;26(5):613-620.

172. Voltmer E, Kötter T, Spahn C. Perceived medical school stress and the development of behavior and experience patterns in German medical students. *Med Teach*. 2012;34(10):840-847.

173. Waqas A, Rehman A, Malik A, Muhammad U, Khan S, Mahmood N. Association of ego defense mechanisms with academic performance, anxiety and depression in medical students: a mixed methods study. *Cureus*. 2015;7(9):e337.

174. Wege N, Muth T, Li J, Angerer P. Mental health among currently enrolled medical students in Germany. *Public Health*. 2016;132:92-100.

175. Wimsatt LA, Schwenk TL, Sen A. Predictors of depression stigma in medical students: potential targets for prevention and education. *Am J Prev Med*. 2015;49(5):703-714.

176. Wolf MR, Rosenstock JB. Inadequate sleep and exercise associated with burnout and depression among medical students. *Acad Psychiatry*. doi:10.1007/s40596-016-0526-y

177. Wongpakaran N, Wongpakaran T. The Thai version of the PSS-10: an investigation of its psychometric properties [published online June 12, 2010]. *Biopsychosoc Med*. doi:10.1186/1751-0759-4-6

178. Yilmaz Y, Vural E, Toprak DE, et al. The relationship between medical education and eating habits along with mental condition in medical students. *Erciyes Tip Derg*. 2014;36(2): 75-81.

179. Yoon S, Lee Y, Han C, et al. Usefulness of the Patient Health Questionnaire-9 for Korean medical students. *Acad Psychiatry*. 2014;38(6):661-667.

180. Youssef FF. Medical student stress, burnout and depression in Trinidad and Tobago. *Acad Psychiatry*. 2016;40(1):69-75.

181. Yusoff MSB. Associations of pass-fail outcomes with psychological health of first-year medical students in a Malaysian medical school. *Sultan Qaboos Univ Med J.* 2013;13(1):107-114.

182. Zeldow PB, Daugherty SR, Clark DC. Masculinity, femininity, and psychosocial adjustment in medical students: a 2-year follow-up. J Pers Assess. 1987;51(1):3-14.

183. Zoccolillo M, Murphy GE, Wetzel RD. Depression among medical students. *J Affect Disord*. 1986;11(1):91-96.

184. Eller T, Aluoja A, Vasar V, Veldi M. Symptoms of anxiety and depression in Estonian medical students with sleep problems. *Depress Anxiety*. 2006;23(4):250-256.

185. Ahmed SA, Omar QH, Abo Elamaim AA. Forensic analysis of suicidal ideation among medical students of Egypt: a cross sectional study. *J Forensic Leg Med*. 2016;44:1-4.

186. Alem A, Araya M, Melaku Z, Wendimagegn D, Abdulahi A. Mental distress in medical students of Addis Ababa University. *Ethiop Med J.* 2005;43(3): 159-166.

187. Amiri L, Voracek M, Yousef S, et al. Suicidal behavior and attitudes among medical students in the United Arab Emirates. *Crisis*. 2013;34(2):116-123.

188. Chen JQ, Han P, Dunne MP. Child sexual abuse: a study among 892 female students of a medical school [in Chinese]. *Zhonghua Er Ke Za Zhi*. 2004;42(1):39-43.

189. Eskin M, Voracek M, Stieger S, Altinyazar V. A cross-cultural investigation of suicidal behavior and attitudes in Austrian and Turkish medical students. Soc Psychiatry Psychiatr Epidemiol. 2011; 46(9):813-823.

190. Khokher S, Khan MM. Suicidal ideation in Pakistani college students. *Crisis*. 2005;26(3):125-127.

191. Menezes RG, Subba SH, Sathian B, et al. Suicidal ideation among students of a medical college in Western Nepal: a cross-sectional study. *Leg Med* (*Tokyo*). 2012;14(4):183-187.

192. Okasha A, Lotaif F, Sadek A. Prevalence of suicidal feelings in a sample of non-consulting medical students. *Acta Psychiatr Scand*. 1981;63(5): 409-415.

193. Tran QA, Dunne MP, Vo TV, Luu NH. Adverse childhood experiences and the health of university students in eight provinces of Vietnam. *Asia Pac J Public Health*. 2015;27(8)(suppl):26S-32S.

194. Tyssen R, Vaglum P, Grønvold NT, Ekeberg O. Suicidal ideation among medical students and young physicians: a nationwide and prospective study of prevalence and predictors. *J Affect Disord*. 2001;64(1):69-79.

195. Wallin U, Runeson B. Attitudes towards suicide and suicidal patients among medical students. *Eur Psychiatry*. 2003;18(7):329-333.

196. Aktekin M, Karaman T, Senol YY, Erdem S, Erengin H, Akaydin M. Anxiety, depression and stressful life events among medical students: a prospective study in Antalya, Turkey. *Med Educ*. 2001;35(1):12-17.

197. Borst JM, Frings-Dresen MHW, Sluiter JK. Prevalence and incidence of mental health problems among Dutch medical students and the study-related and personal risk factors: a longitudinal study. *Int J Adolesc Med Health*. 2016; 28(4):349-355.

198. Camp DL, Hollingsworth MA, Zaccaro DJ, Cariaga-Lo LD, Richards BF. Does a problem-based learning curriculum affect depression in medical students? *Acad Med*. 1994;69(10)(suppl):S25-S27.

199. Clark DC, Zeldow PB. Vicissitudes of depressed mood during four years of medical school. *JAMA*. 1988;260(17):2521-2528.

200. Del-Ben CM, Machado VF, Madisson MM, Resende TL, Valério FP, Troncon LEDA. Relationship between academic performance and affective changes during the first year at medical school. *Med Teach*. 2013;35(5):404-410.

201. Guthrie E, Black D, Bagalkote H, Shaw C, Campbell M, Creed F. Psychological stress and burnout in medical students: a five-year prospective longitudinal study. *J R Soc Med*. 1998;91 (5):237-243. **202**. Levine RE, Litwins SD, Frye AW. An evaluation of depressed mood in two classes of medical students. *Acad Psychiatry*. 2006;30(3):235-237.

203. Ludwig AB, Burton W, Weingarten J, Milan F, Myers DC, Kligler B. Depression and stress amongst undergraduate medical students. *BMC Med Educ*. 2015;15:141.

204. Newbury-Birch D, Walshaw D, Kamali F. Drink and drugs: from medical students to doctors. *Drug Alcohol Depend*. 2001;64(3):265-270.

205. Peleg-Sagy T, Shahar G. The prospective associations between depression and sexual satisfaction among female medical students. *J Sex Med*. 2013;10(7):1737-1743.

206. Quince TA, Wood DF, Parker RA, Benson J. Prevalence and persistence of depression among undergraduate medical students: a longitudinal study at one UK medical school. *BMJ Open*. 2012;2 (4):e001519.

207. Rosal MC, Ockene IS, Ockene JK, Barrett SV, Ma Y, Hebert JR. A longitudinal study of students' depression at one medical school. *Acad Med*. 1997; 72(6):542-546.

208. Vitaliano PP, Maiuro RD, Russo J, Mitchell ES, Carr JE, Van Citters RL. A biopsychosocial model of medical student distress. *J Behav Med*. 1988;11(4): 311-331.

209. Walkiewicz M, Tartas M, Majkowicz M, Budzinski W. Academic achievement, depression and anxiety during medical education predict the styles of success in a medical career: a 10-year longitudinal study. *Med Teach*. 2012;34(9):e611-e619.

210. Yusoff MSB, Abdul Rahim AF, Baba AA, Ismail SB, Mat Pa MN, Esa AR. The impact of medical education on psychological health of students: a cohort study. *Psychol Health Med*. 2013;18(4): 420-430.

211. Clarke DM, Currie KC. Depression, anxiety and their relationship with chronic diseases: a review of the epidemiology, risk and treatment evidence. *Med J Aust*. 2009;190(7)(suppl):S54-S60.

212. Glassman AH, Shapiro PA. Depression and the course of coronary artery disease. *Am J Psychiatry*. 1998;155(1):4-11.

213. Mata DA, Ramos MA, Kim MM, Guille C, Sen S. In their own words: an analysis of the experiences of medical interns participating in a prospective cohort study of depression. *Acad Med*. 2016;91(9): 1244-1250.

214. West CP, Huschka MM, Novotny PJ, et al. Association of perceived medical errors with resident distress and empathy: a prospective longitudinal study. *JAMA*. 2006;296(9):1071-1078.

215. Fahrenkopf AM, Sectish TC, Barger LK, et al. Rates of medication errors among depressed and burnt out residents: prospective cohort study. *BMJ*. 2008;336(7642):488-491.

216. West CP, Tan AD, Habermann TM, Sloan JA, Shanafelt TD. Association of resident fatigue and distress with perceived medical errors. *JAMA*. 2009;302(12):1294-1300.

217. Williams JW Jr, Pignone M, Ramirez G, Perez Stellato C. Identifying depression in primary care: a literature synthesis of case-finding instruments. *Gen Hosp Psychiatry*. 2002;24(4):225-237. **218**. Myers M. On the importance of anonymity in surveying medical student depression. *Acad Psychiatry*. 2003;27(1):19-20.

219. Puthran R, Zhang MWB, Tam WW, Ho RC. Prevalence of depression amongst medical students: a meta-analysis. *Med Educ*. 2016;50(4): 456-468.

220. Center for Behavioral Health Statistics and Quality. Behavioral health trends in the United States: results from the 2014 national survey on drug use and health. http://www.samhsa.gov/data/. Accessed October 31, 2016.

221. Kessler RC, Berglund P, Demler O, et al; National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). *JAMA*. 2003;289(23):3095-3105.

222. Pratt LA, Brody DJ. Depression in the US household population, 2009-2012. *NCHS Data Brief*. 2014;(172):1-8.

223. Ibrahim AK, Kelly SJ, Adams CE, Glazebrook C. A systematic review of studies of depression prevalence in university students. *J Psychiatr Res.* 2013;47(3):391-400.

224. Eisenberg D, Gollust SE, Golberstein E, Hefner JL. Prevalence and correlates of depression, anxiety, and suicidality among university students. *Am J Orthopsychiatry*. 2007;77(4):534-542.

225. Steptoe A, Tsuda A, Tanaka Y, Wardle J. Depressive symptoms, socio-economic background, sense of control, and cultural factors in university students from 23 countries. *Int J Behav Med*. 2007;14(2):97-107.

226. Krill PR, Johnson R, Albert L. The prevalence of substance use and other mental health concerns among American attorneys. *J Addict Med*. 2016;10 (1):46-52.

227. Brain and Mind Research Institute, Tristan Jepson Memorial Foundation. Courting the blues: attitudes towards depression in Australian law students and legal practitioners. http://trove.nla .gov.au/work/31619934?selectedversion =NBD44322895. Accessed October 31, 2016.

228. Simon GE, Rutter CM, Peterson D, et al. Does response on the PHQ-9 depression questionnaire predict subsequent suicide attempt or suicide death? *Psychiatr Serv.* 2013;64(12):1195-1202.

229. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Lancet*. 2007;370(9596):1453-1457.

230. Williams DE. The future of medical education: flipping the classroom and education technology. *Ochsner J.* 2016;16(1):14-15.

231. Spring L, Robillard D, Gehlbach L, Simas TAM. Impact of pass/fail grading on medical students' well-being and academic outcomes. *Med Educ*. 2011;45(9):867-877.

232. Mata DA, Lin JS, Ramos MA. Can we predict future depression in residents before the start of clinical training? *Med Educ.* 2015;49(7):741-742.

233. Rosenthal JM, Okie S. White coat, mood indigo–depression in medical school. *N Engl J Med.* 2005;353(11):1085-1088.